
Combinatorics C8.3 Problem 0 solutions ADS MT2020

1. Let G be a bipartite graph with bipartition (A,B). Suppose that every
vertex in G has the same degree d > 0.

(a) Show that |A| = |B|.
(b) Look up Hall’s theorem. Use this result to prove that G contains

a complete matching.

(c) Show that the edge set of G can be partitioned into d edge disjoint
complete matchings.

Solution: For part (a), note that since G is bipartite we can count the
edges of G by summing the degrees in either A or B. This gives

d|A| =
∑

a∈A

dG(a) = e(G) =
∑

b∈B

dG(b) = d|B|.

As d > 0 this implies |A| = |B|.

(b) Given S ⊂ A let Γ(S) := {b ∈ B : ab ∈ E(G) for some a ∈ S} ⊂ B.
By Hall’s theorem in order to prove G has a complete matching from A
to B it is enough to show that |Γ(S)| ≥ |S| for all S ⊂ A. To see this,
we will estimate edges between S and Γ(S) in two ways; this technique
is often referred to as ‘double counting’. Note that

d|S| =
∣

∣{(a, b) ∈ S × Γ(S) : ab ∈ E(G)}
∣

∣ ≤ d|Γ(S)|.

The equality holds as each a ∈ S has all dG(a) = d neighbours in Γ(S)
and the inequality holds since each b ∈ Γ(S) has at most dG(b) = d
neighbours in S. Dividing by d we see that the conditions of Hall’s
theorem hold for G.

(c) By induction on d. If d = 1 then the edges of G form a complete
matching. We will prove the result for d ≥ 2 assuming by induction
that it holds for smaller degree. From (b) there is a complete matching
M in G. Let G′ denote the graph obtained from G by deleting the
edges of M. All vertices in G′ have degree d − 1 and so the edges of
G′ can be partitioned into d − 1 complete matching M1, . . . ,Md−1.
Combined with M this gives the required partition.



2. Let P(n) denote the power set of [n] := {1, . . . n}. For A,B ∈ P(n), we
define the symmetric difference of A and B is A△B := (A\B)∪(B\A).

(a) SupposeA ⊂ P(n), and there do not existA,B ∈ A with |A△B| =
1. How large can |A| be?

(b) For n ≥ 1, give two examples of A with maximal size. Are there
any others?

Solution: It may be helpful to note that if two sets have symmetric
difference of size 1, then the corresponding vertices in the hypercube
are adjacent. (See the introductory lecture for this correspondence.)

For (a), we define a bipartite graph as follows. Let V = A and let
W = P(n) \ A, and join A ∈ V and B ∈ W if and only if their
symmetric difference has size 1. Now note that every vertex in V
has degree n, while every vertex in W has degree at most n. Double
counting the set E of edges, we see that

|A|n = |E| ≤ |B|n, (1)

and so |A| ≤ |B|. We deduce that |A| ≤ |P(n)|/2 = 2n−1.

For (b), two examples are the sets of even size and the sets of odd size.

These are in fact the only examples. IfA is an example with |A| = 2n−1,
then we must have equality in (1). So every vertex in W has degree
n. Now suppose A contains a set F of even size. If we add or delete
an element to F then we get a set F ′ in P(n) \ A; and if we add or
delete an element to F ′ then we get a set F ′′ in A again. You can get
between any two sets of even size by changing two elements at a time,
so A must contain all sets of even size (and so no sets of odd size). On
the other hand, if A contains no sets of even size, then it must contain
all sets of odd size.

3. Let [n](i) :=
{

A ⊂ {1, . . . , n} : |A| = i
}

and suppose that i ≤ n/2.

Prove that there is a bijection f : [n](i) → [n](i) such that A∩ f(A) = ∅
for every A.

Solution: Let’s set up a bipartite graph G = (V,W ). Let V = W =
[n](i), and join A ∈ V and B ∈ W if A ∩ B = ∅. Since i ≤ n/2, the
graph G does have edges; and it is easy to see that every vertex has the



same degree (in fact
(

n−i
i

)

). We know from Question 1 that this graph
contains a complete matching: use this to define the mapping.

4. (a) Prove that |P(n)| = 2n.

(b) Suppose a set A ∈ P [n] is selected uniformly at random. Let X
denote the random variable given by X(A) := |A|. Prove that
E(X) = n/2 and var(X) = n/4.

(c) Use Chebyshev’s inequality and (b) to show that given ǫ > 0
there is C > 0 such that at least (1 − ǫ)2n sets A ⊂ [n] satisfy
∣

∣|A| − n
2

∣

∣ ≤ C
√
n.

Solution: (a) The map which sends the vector (x1, . . . , xn) ∈ {0, 1}n
to the set {i ∈ [n] : xi = 1} ∈ P [n] is a bijection, and so |P [n]| =
|{0, 1}n| = 2n.

To see (b), note that X can be written as a sum of indicator random
variables X =

∑

i∈[n] Xi, where Xi(A) = 1 if i ∈ A and Xi(A) = 0 if

i /∈ A. We have E(Xi) = P(i ∈ A) = 1
2
for each i ∈ [n] and so linearity

of expectation gives

E(X) = E(
∑

i∈[n]

Xi) =
∑

i∈[n]

E(Xi) =
n

2
.

To see the variance calculation recall that

Var(X) = E(X2)− E(X)2 = E

(

(
∑

i∈[n]

Xi)(
∑

j∈[n]

Xj)
)

− n2

4

=
∑

i∈[n]

E

(

X2
i

)

+
∑

i,j∈[n]:i 6=j

E

(

XiXj

)

− n2

4

= n · 1
2
+ n(n− 1) · 1

4
− n2

4
=

n

4
.

Here we used E(X2
i ) = E(Xi) =

1
2
and E(XiXj) = P(i, j ∈ A) = 1

4
for

i 6= j.

For (c) note that for any t > 0 by Chebyshev’s inequality we have

P

(

∣

∣|A| − n

2

∣

∣ ≥ t
)

= P

(

∣

∣X − E(X)
∣

∣ ≥ t
)

≤ Var(X)

t2
=

n

4t2
.



If we set t = Cn1/2 where C = ǫ−1/2/2 then gives P
(∣

∣|A| − n
2

∣

∣ ≥ t
)

≤ ǫ.
Since the sets were selected uniformly at random, this is equivalent to
the statement that at most ǫ2n sets A ∈ P [n] satisfy

∣

∣|A| − n
2

∣

∣ ≥ t.


