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(i) We say that a function u : R2 → R is C2-bounded if u is twice-differentiable and satisfies

sup
x∈R2

(
|u(x)|+ |∇u(x)|+

∣∣∇2u(x)
∣∣) <∞.

Prove that every C2-bounded function u satisfying

∆u =
∂2u

∂2x
+
∂2u

∂2y
= 0,

is constant. (Hint: Apply Itô’s formula to the composition (u(Bt))t∈[0,∞), for (Bt)t∈[0,∞)

a standard two-dimensional Brownian motion.) Conclude that every bounded holomorphic
function f : C→ C is constant.

(ii) Let (Mt)t∈[0,∞) be a continuous local martingale vanishing at zero.
(a) Show that the intervals of constancy of the maps t 7→ Mt and t 7→ 〈M〉t coincide almost

surely.
(b) Show that if, for every ξ ∈ R, for every s ≤ t ∈ [0,∞),

E[exp(iξ(Mt −Ms))|Fs] = exp

(
−ξ

2(t− s)
2

)
,

then (Mt)t∈[0,∞) is a Brownian motion.

(iii) Let (Bt = (B1
t , . . . , B

d
t ))t∈[0,∞) be a standard d-dimensional Brownian motion. Let (Ft =

(F 1
t , . . . , F

d
t ))t∈[0,∞) be a continuous, adapted, d-dimensional stochastic process that satisfies,

for every i ∈ {1, . . . , d}, for every t ∈ (0,∞),

E[

∫ t

0

∣∣F i
s

∣∣2 ds] <∞.

(a) Prove that, for every i, j ∈ {1, . . . , d}, for every t ∈ (0,∞),

〈Bi, Bj〉t = δijt =

{
t if i = j,

0 if i 6= j.

(b) Prove that, for every i, j ∈ {1, . . . , d}, for every t ∈ (0,∞),

〈
∫ ·
0
F i
s dBi

s,

∫ ·
0
F j
s dBj

s〉t = δij

∫ t

0
F i
sF

j
s ds.

(c) Prove that the process (Xt)t∈[0,∞) defined by

Xt =

(
d∑

i=1

∫ t

0
F i
s dBi

s

)2

−
d∑

i=1

∫ t

0

(
F i
s

)2
ds,

is a martingale.
(d) Prove that, for every λ, t ∈ (0,∞),

P

[(
sup
s∈[0,t]

∣∣∣∣∣
d∑

i=1

∫ s

0
F i
r dBi

r

∣∣∣∣∣
)
≥ λ

]
≤ λ−2

d∑
i=1

∫ t

0
E[(F i

t )2] ds.
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(iv) Let (Bt)t∈[0,∞) be a standard Brownian motion on a filtered probability space

(Ω,G, (Gt)t∈[0,∞),P).

Let X be a finite G0-measurable positive random variable that is independent of the Brownian
motion. Let (Mt = BtX)t∈[0,∞) and define the filtration (Ft)t∈[0,∞) by

Ft = σ(BsX : s ∈ [0, t]).

(a) Show that M is a local martingale with respect to (Ft)t∈[0,∞).

(b) Show that M is a martingale if and only if E[
√
X] <∞.

(c) Calculate (〈M〉t)t∈[0,∞).
(d) Let (At)t∈[0,∞) be an increasing process vanishing at zero that is independent of (Bt)t∈[0,∞).

Define the filtration (FA
t )t∈[0,∞) by

FA
t = σ(BAs : s ∈ [0, t]).

Show that (BAt)t∈[0,∞) is a local FA
t -martingale, find conditions that guarantee that

(BAt)t∈[0,∞) is a FA
t -martingale, and compute its quadratic variation process.

(v) Let (Bt)t∈[0,∞), (Wt)t∈[0,∞) be two independent standard Brownian motions. Find the sto-
chastic differential equations satisfied by the following processes (Xt)t∈[0,∞), and determine
which are martingales.
(a) Xt = exp( t

2) cos(Bt)
(b) Xt = tBt

(c) Xt = (Bt + t) exp(−Bt − t
2)

(d) Xt = (Bt)
2 + (Wt)

2

(vi) Let (Bt)t∈[0,∞) be a standard d-dimensional Brownian motion with B0 6= 0, for d ≥ 2. Let
(Xt)t∈[0,∞) be the process

Xt = ‖Bt‖ =
√

(B1
t )2 + . . .+ (Bd

t )2.

(a) Find the SDE satisfied by (Xt)t∈[0,∞) and show that

Xt = X0 +

∫ t

0

d− 1

2Xs
ds+Wt,

where (Wt)t∈[0,∞) is standard one-dimensional Brownian motion.

(b) Let βk(t) = E[|Xt|2k] for every k ∈ N0 and t ∈ (0,∞). Prove that

βk(t) = k(2(k − 1) + d)

∫ t

0
βk−1(s) ds.

(c) Calculate the time t ∈ [0,∞) for which E[‖Bt‖4] = E[‖Bt‖6].
(vii) Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion. Prove that, for every x ∈ R,

Xx
t =

∫ t

0
sgn(Bs − x) dBs,

is a Brownian motion where

sgn(y) =

{
1 if y ≥ 0,

− 1 if y < 0.
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(viii) Let (B1
t , B

2
t )t∈[0,∞) be a standard two-dimensional Brownian motion. Prove that the process

((X1
t , X

2
t ))t∈[0,∞) defined by

X1
t =

∫ t

0
cos(B1

s ) dB1
s −

∫ t

0
sin(B1

s ) dB2
s ,

X2
t =

∫ t

0
sin(B1

s ) dB1
s +

∫ t

0
cos(B1

s ) dB2
s ,

is a standard two-dimensional Brownian motion.
(ix) Let (Xt)t∈[0,∞) and (Yt)t∈[0,∞) be continuous semimartingales. Define the stochastic exponen-

tial (E(X)t)t∈[0,∞) to be the process

E(X)t = exp

(
Xt −

〈X〉t
2

)
.

Prove that there exists a unique continuous semimartingale (Zt)t∈[0,∞) such that

Zt = Yt +

∫ t

0
Zs dXs,

and that

Zt = E(X)t

(
Y0 +

∫ t

0
E(X)−1s dYs −

∫ t

0
E(X)−1s d〈X,Y 〉s

)
.


