STOCHASTIC DIFFERENTIAL EQUATIONS MATH C8.1 - 2019 - SHEET 3

1. Sheet 3

(i) For every probability measure μ on \mathbb{R}^d let $\hat{\mu}$ denote the Fourier transform defined for every $\xi \in \mathbb{R}^d$ by

$$\hat{\mu}(\xi) = \int_{\mathbb{R}^d} \exp\left(i\langle x,\xi\rangle\right) \mu(\,\mathrm{d} x).$$

In particular, if X is an \mathbb{R}^d -valued random variable with distribution μ_X , then the Fourier transform is the characteristic function of X in the sense that

$$\mathbb{E}\left[\exp(i\langle X,\xi\rangle)\right] = \int_{\mathbb{R}^d} \exp(i\langle x,\xi\rangle)\mu_X(\,\mathrm{d} x) = \hat{\mu}_X(\xi).$$

For probability measures μ and ν on \mathbb{R}^d , prove that $\mu = \nu$ if and only if $\hat{\mu} = \hat{\nu}$. Hint: For a Schwarz function ϕ , compute

$$\int_{\mathbb{R}^d} \phi(\xi) \hat{\mu}(\xi) \,\mathrm{d}\xi.$$

Show that if X is a normally distributed random variable with mean zero and variance $t \in (0, \infty)$ then

$$\hat{\mu}_X(\xi) = \exp\left(-\frac{\xi^2 t}{2}\right).$$

(ii) Let $(B_t)_{t \in [0,\infty)}$ be a standard \mathcal{F}_t -Brownian motion. Let $(M_t)_{t \in [0,\infty)}$ be an L^2 -bounded \mathcal{F}_t -martingale in the sense that

$$\sup_{t\in[0,\infty)}\mathbb{E}\left[M_t^2\right]<\infty.$$

Prove that there exists a unique predictable process $(H_t)_{t \in [0,\infty)} \in L^2(B)$ such that, for every $t \in [0,\infty)$,

$$M_t = \mathbb{E}[M_0] + \int_0^t H_s \,\mathrm{d}B_s.$$

(iii) Let $(B_t)_{t\in[0,\infty)}$ be a standard one-dimensional Brownian motion. Let $C([0,\infty);\mathbb{R})$ denote the space of continuous paths from $[0,\infty)$ into \mathbb{R} . Let $\mu, \sigma \colon [0,\infty) \times C([0,\infty),\mathbb{R}) \to R$ be bounded functions in the sense that there exists $K_1 \in (0,\infty)$ such that, for every $t \in [0,\infty)$ and continuous path $(X_t)_{t\in[0,\infty)}$,

$$(|\mu(t, X_{\cdot})| + |\sigma(t, X_{\cdot})|) \le K_1,$$

and which are Lipschitz continuous in the sense that there exists $K_2 \in (0, \infty)$ such that, for every $t \in [0, \infty)$, for every pair of continuous paths $(X_t)_{t \in [0,\infty)}$ and $(Y_t)_{t \in [0,\infty)}$,

$$(|\sigma(t, X_{\cdot}) - \sigma(t, Y_{\cdot})| + |\mu(t, X_{\cdot}) - \mu(t, Y_{\cdot})|) \le K_2 \sup_{s \in [0, t]} |X_s - Y_s|.$$

Prove that there exists a jointly continuous process $(X_t^x)_{x \in \mathbb{R}^d, t \in [0,\infty)}$ such that, for every $x \in \mathbb{R}^d$ and $t \in [0,\infty)$,

(1.1)
$$X_t^x = x + \int_0^t \mu(s, X_{\cdot}^x) \,\mathrm{d}s + \int_0^t \sigma(s, X_{\cdot}^x) \,\mathrm{d}B_s \text{ almost surely.}$$

Hint: The issue is proving continuity in space. In class, we proved that for every $x \in \mathbb{R}^d$ there exists a continuous in time solution $(X_t^x)_{t \in [0,\infty)}$ of (1.1). For every $p \in [2,\infty)$ and $t \in (0,\infty)$, use the inequality $|a + b + c|^p \leq 3^{p-1} (|a|^p + |b|^p + |c|^p)$ to prove that, for each $x, y \in \mathbb{R}^d$,

$$\sup_{s \in [0,t]} |X_s^x - X_s^y|^p \leq 3^{p-1} |x - y|^p + 3^{p-1} \left(\sup_{s \in [0,t]} \left| \int_0^s \mu(r, X_r^x) - \mu(r, X_r^y) \, \mathrm{d}r \right|^p + \sup_{s \in [0,t]} \left| \int_0^s \sigma(r, X_r^x) - \sigma(r, X_r^y) \, \mathrm{d}B_r \right|^p \right).$$

Then prove using the Burkholder-Davis-Gundy inequality, Hölder's inequality, and $p \in [2, \infty)$ that there exists $C_p \in (0, \infty)$ such that

$$\mathbb{E}\left[\sup_{s\in[0,t]}\left|\int_{0}^{s}\sigma(r,X_{r}^{x})-\sigma(r,X_{r}^{y})\,\mathrm{d}B_{r}\right|^{p}\right] \leq C_{p}K_{2}^{p}t^{\frac{p-2}{p}}\int_{0}^{t}\mathbb{E}\left[\sup_{s\in[0,r]}\left|X_{s}^{x}-X_{s}^{y}\right|^{p}\right]\,\mathrm{d}r.$$

Deduce using Jensen's inequality and $p \in [2, \infty)$ that

$$\sup_{s \in [0,t]} \left| \int_0^s \mu(r, X_r^x) - \mu(r, X_r^y) \, \mathrm{d}r \right|^p \le K_2^p t^{p-1} \int_0^t \sup_{s \in [0,r]} |X_s^x - X_s^y|^p \, \mathrm{d}r.$$

Conclude that, for every $t \in [0, \infty)$,

$$\mathbb{E}\left[\sup_{s\in[0,t]}|X_{s}^{x}-X_{s}^{y}|^{p}\right] \leq 3^{p-1}\left(|x-y|^{p}+\left(C_{p}K_{2}^{p}t^{\frac{p-2}{p}}+K_{2}^{p}t^{p-1}\right)\int_{0}^{t}\mathbb{E}\left[\sup_{s\in[0,r]}|X_{s}^{x}-X_{s}^{y}|^{p}\right]\mathrm{d}r\right).$$

Prove using the Gronwall inequality that there exists a constant $c(t, p) \in (0, \infty)$ depending on $t \in [0, \infty)$ and $p \in [2, \infty)$ such that

$$\mathbb{E}\left[\sup_{s\in[0,t]}\left|X_{s}^{x}-X_{s}^{y}\right|^{p}\right]\leq c(t,p)\left|x-y\right|^{p}.$$

Deduce using the Komogorov continuity criterion that there exists a bicontinuous modification of the process $(X_t^x)_{x \in \mathbb{R}^d, t \in [0,\infty)}$ which solves (1.1).

(iv) Let $(W_t^1, W_t^2, W_t^3)_{t \in [0,\infty)}$ be a three-dimensional Brownian motion, and assume that W_0 takes values in $\mathbb{R}^d \setminus \{0\}$ and that W_0 is independent of $(W_t - W_0)_{t \in [0,\infty)}$. Define the Euclidean norm

$$|W| = \left((W_t^1)^2 + (W_t^2)^2 + (W_t^3)^2 \right)^{\frac{1}{2}}.$$

- (a) Show that $(|W_t|^{-1})_{t \in [0,\infty)}$ is a local martingale. Hint: If $d \ge 3$, the function $|x|^{2-d}$ is harmonic on $\mathbb{R}^d \setminus \{0\}$.
- (b) Suppose that $W_0 = y \in \mathbb{R}^d$ and for every $t \in [0, \infty)$ define $M_t = |W_{1+t} y|^{-1}$. Prove by direct calculation that $\mathbb{E}[M_t^2] = 1/1+t$. Deduce that $(M_t)_{t \in [0,\infty)}$ is L^2 -bounded and hence uniformly integrable.
- (c) Show that $(M_t)_{t \in [0,\infty)}$ is a local martingale and a supermartingale.

- (d) Use the martingale convergence theorem to prove that $(M_t)_{t \in [0,\infty)}$ is not a martingale.
- (v) Let $(B_t)_{t \in [0,\infty)}$ be a standard one-dimensional Brownian motion. Prove that

$$B_t^4 = 3t^2 + \int_0^t \left(12(t-s)B_s + 4B_s^3\right) \, \mathrm{d}B_s$$

- (vi) Let $d_1, d_2 \in \mathbb{N}$. Let $(B_t)_{t \in [0,\infty)}$ be a standard d_2 -dimensional Brownian motion. Let μ be a constant $(d_1 \times d_1)$ -matrix and let σ be a constant $(d_1 \times d_2)$ -matrix.
 - (a) For every $x \in \mathbb{R}^d$, find the unique strong solution $(X_t^x, B_t)_{t \in [0,\infty)}$ to the equation

$$\begin{cases} dX_t^x = \mu X_t^x dt + \sigma dB_t & \text{in } (0, \infty), \\ X_0^x = x. \end{cases}$$

Hint: For a $d_1 \times d_1$ -matrix A, use properties of the matrix exponential

$$\exp(tA) = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!}$$

The solution itself will be expressed in terms of a stochastic integral.

- (b) Find the distribution of X_t^x for every $t \in [0, \infty)$.
- (c) Let $d_1 = d_2 = 1$. Prove that, for every bounded measurable function $f \colon \mathbb{R}^d \to \mathbb{R}$,

$$\mathbb{E}\left[f(X_t^x)\right] = \mathbb{E}'\left[f\left(x\exp(\mu t) + N\sqrt{\frac{\sigma^2}{2\mu}\left(\exp(2t\mu) - 1\right)}\right)\right]$$

where \mathbb{E}' denotes the expectation on any probability space $(\Omega', \mathcal{F}', \mathbb{P}')$ carrying a normally distributed random variable N with mean zero and variance one.

(vii) Let $\lambda, \nu, \sigma \in (0, \infty)$ and let $\mu \colon \mathbb{R} \to \mathbb{R}$ be defined by

$$\mu(x) = \lambda(\nu - x).$$

Let $(B_t)_{t \in [0,\infty)}$ be a standard one-dimensional Brownian motion.

(a) For every $x \in \mathbb{R}$, find the unique strong solution $(X_t^x, B_t)_{t \in [0,\infty)}$ to the equation

$$\begin{cases} \mathrm{d}X_t^x = \mu(X_t^x) \,\mathrm{d}t + \sigma \,\mathrm{d}B_t & \text{in } (0,\infty), \\ X_0^x = x. \end{cases}$$

- (b) Calculate the mean and variance of X_t^x , for each $x \in \mathbb{R}^d$ and $t \in [0, \infty)$.
- (c) Let $\nu = 1$. Show that $(Y_t^x = (X_t^x)^2, B_t)_{t \in [0,\infty)}$ is a strong solution to the equation

$$\begin{cases} dY_t^x = (-2\lambda Y_t + \sigma^2) dt + 2\sigma \sqrt{Y_t} dB_t & \text{in } (0, \infty), \\ Y_0^x = x^2. \end{cases}$$

(viii) Let $\mu, \sigma \in \mathbb{R}$. Let $(B_t)_{t \in [0,\infty)}$ be a standard one-dimensional Brownian motion. For every $x \in \mathbb{R}$, use the stochastic exponential to find a strong solution $(X_t^x, B_t)_{t \in [0,\infty)}$ to the equation

$$\begin{cases} \mathrm{d}X_t^x = \mu \,\mathrm{d}t + \sigma X_t^x \,\mathrm{d}B_t & \text{in } (0,\infty), \\ X_0^x = x. \end{cases}$$

(ix) Let $(M_t)_{t \in [0,\infty)}$ be a continuous local martingale vanishing at zero, and let $(L_t^0)_{t \in [0,\infty)}$ denote the local time of $(M_t)_{t \in [0,\infty)}$ at zero.

(a) Prove that

 $\inf\{t\in[0,\infty)\colon L^0_t>0\}=\inf\{t\in[0,\infty)\colon \langle M\rangle_t>0\} \ \text{almost surely}.$

(b) Prove that if $\alpha \in (0,1)$ and $(M_t)_{t \in [0,\infty)}$ is not identically zero, then $(|M_t|^{\alpha})_{t \in [0,\infty)}$ is not a semimartingale.