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(i) For every probability measure µ on R
d let µ̂ denote the Fourier transform defined for every

ξ ∈ R
d by

µ̂(ξ) =

∫

Rd

exp (i〈x, ξ〉)µ( dx).

In particular, if X is an R
d-valued random variable with distribution µX , then the Fourier

transform is the characteristic function of X in the sense that

E [exp(i〈X, ξ〉)] =

∫

Rd

exp(i〈x, ξ〉)µX( dx) = µ̂X(ξ).

For probability measures µ and ν on R
d, prove that µ = ν if and only if µ̂ = ν̂. Hint: For a

Schwarz function φ, compute
∫

Rd

φ(ξ)µ̂(ξ) dξ.

Show that if X is a normally distributed random variable with mean zero and variance t ∈
(0,∞) then

µ̂X(ξ) = exp

(

−
ξ2t

2

)

.

(ii) Let (Bt)t∈[0,∞) be a standard Ft-Brownian motion. Let (Mt)t∈[0,∞) be an L2-bounded Ft-
martingale in the sense that

sup
t∈[0,∞)

E
[

M2
t

]

< ∞.

Prove that there exists a unique predictable process (Ht)t∈[0,∞) ∈ L2(B) such that, for every
t ∈ [0,∞),

Mt = E[M0] +

∫ t

0
Hs dBs.

(iii) Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion. Let C([0,∞);R) denote
the space of continuous paths from [0,∞) into R. Let µ, σ : [0,∞) × C([0,∞),R) → R be
bounded functions in the sense that there exists K1 ∈ (0,∞) such that, for every t ∈ [0,∞)
and continuous path (Xt)t∈[0,∞),

(|µ(t,X·)|+ |σ(t,X·)|) ≤ K1,

and which are Lipschitz continuous in the sense that there exists K2 ∈ (0,∞) such that, for
every t ∈ [0,∞), for every pair of continuous paths (Xt)t∈[0,∞) and (Yt)t∈[0,∞),

(|σ(t,X·)− σ(t, Y·)|+ |µ(t,X·)− µ(t, Y·)|) ≤ K2 sup
s∈[0,t]

|Xs − Ys| .
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Prove that there exists a jointly continuous process (Xx
t )x∈Rd,t∈[0,∞) such that, for every

x ∈ R
d and t ∈ [0,∞),

(1.1) Xx
t = x+

∫ t

0
µ(s,Xx

·
) ds+

∫ t

0
σ(s,Xx

·
) dBs almost surely.

Hint: The issue is proving continuity in space. In class, we proved that for every x ∈ R
d there

exists a continuous in time solution (Xx
t )t∈[0,∞) of (1.1). For every p ∈ [2,∞) and t ∈ (0,∞),

use the inequality |a+ b+ c|p ≤ 3p−1 (|a|p + |b|p + |c|p) to prove that, for each x, y ∈ R
d,

sup
s∈[0,t]

|Xx
s −Xy

s |
p

≤ 3p−1 |x− y|p

+ 3p−1

(

sup
s∈[0,t]

∣

∣

∣

∣

∫ s

0
µ(r,Xx

r )− µ(r,Xy
r ) dr

∣

∣

∣

∣

p

+ sup
s∈[0,t]

∣

∣

∣

∣

∫ s

0
σ(r,Xx

r )− σ(r,Xy
r ) dBr

∣

∣

∣

∣

p
)

.

Then prove using the Burkholder-Davis-Gundy inequality, Hölder’s inequality, and p ∈ [2,∞)
that there exists Cp ∈ (0,∞) such that

E

[

sup
s∈[0,t]

∣

∣

∣

∣

∫ s

0
σ(r,Xx

r )− σ(r,Xy
r ) dBr

∣

∣

∣

∣

p
]

≤ CpK
p
2 t

p−2

p

∫ t

0
E

[

sup
s∈[0,r]

|Xx
s −Xy

s |
p

]

dr.

Deduce using Jensen’s inequality and p ∈ [2,∞) that

sup
s∈[0,t]

∣

∣

∣

∣

∫ s

0
µ(r,Xx

r )− µ(r,Xy
r ) dr

∣

∣

∣

∣

p

≤ Kp
2 t

p−1

∫ t

0
sup

s∈[0,r]
|Xx

s −Xy
s |

p dr.

Conclude that, for every t ∈ [0,∞),

E

[

sup
s∈[0,t]

|Xx
s −Xy

s |
p

]

≤ 3p−1

(

|x− y|p +
(

CpK
p
2 t

p−2

p +Kp
2 t

p−1
)

∫ t

0
E

[

sup
s∈[0,r]

|Xx
s −Xy

s |
p

]

dr

)

.

Prove using the Gronwall inequality that there exists a constant c(t, p) ∈ (0,∞) depending
on t ∈ [0,∞) and p ∈ [2,∞) such that

E

[

sup
s∈[0,t]

|Xx
s −Xy

s |
p

]

≤ c(t, p) |x− y|p .

Deduce using the Komogorov continuity criterion that there exists a bicontinuous modification
of the process (Xx

t )x∈Rd,t∈[0,∞) which solves (1.1).

(iv) Let (W 1
t ,W

2
t ,W

3
t )t∈[0,∞) be a three-dimensional Brownian motion, and assume that W0 takes

values in R
d \{0} and that W0 is independent of (Wt−W0)t∈[0,∞). Define the Euclidean norm

|W | =
(

(W 1
t )

2 + (W 2
t )

2 + (W 3
t )

2
)

1

2 .

(a) Show that (|Wt|
−1)t∈[0,∞) is a local martingale. Hint: If d ≥ 3, the function |x|2−d is

harmonic on R
d \ {0}.

(b) Suppose that W0 = y ∈ R
d and for every t ∈ [0,∞) define Mt = |W1+t − y|−1. Prove by

direct calculation that E[M2
t ] = 1/1+t. Deduce that (Mt)t∈[0,∞) is L

2-bounded and hence
uniformly integrable.

(c) Show that (Mt)t∈[0,∞) is a local martingale and a supermartingale.
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(d) Use the martingale convergence theorem to prove that (Mt)t∈[0,∞) is not a martingale.

(v) Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion. Prove that

B4
t = 3t2 +

∫ t

0

(

12(t− s)Bs + 4B3
s

)

dBs.

(vi) Let d1, d2 ∈ N. Let (Bt)t∈[0,∞) be a standard d2-dimensional Brownian motion. Let µ be a
constant (d1 × d1)-matrix and let σ be a constant (d1 × d2)-matrix.
(a) For every x ∈ R

d, find the unique strong solution (Xx
t , Bt)t∈[0,∞) to the equation

{

dXx
t = µXx

t dt+ σ dBt in (0,∞),

Xx
0 = x.

Hint: For a d1 × d1-matrix A, use properties of the matrix exponential

exp(tA) =

∞
∑

k=0

tkAk

k!
.

The solution itself will be expressed in terms of a stochastic integral.
(b) Find the distribution of Xx

t for every t ∈ [0,∞).
(c) Let d1 = d2 = 1. Prove that, for every bounded measurable function f : Rd → R,

E [f(Xx
t )] = E

′

[

f

(

x exp(µt) +N

√

σ2

2µ
(exp(2tµ)− 1)

)]

,

where E′ denotes the expectation on any probability space (Ω′,F ′,P′) carrying a normally
distributed random variable N with mean zero and variance one.

(vii) Let λ, ν, σ ∈ (0,∞) and let µ : R → R be defined by

µ(x) = λ(ν − x).

Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion.
(a) For every x ∈ R, find the unique strong solution (Xx

t , Bt)t∈[0,∞) to the equation
{

dXx
t = µ(Xx

t ) dt+ σ dBt in (0,∞),

Xx
0 = x.

(b) Calculate the mean and variance of Xx
t , for each x ∈ R

d and t ∈ [0,∞).
(c) Let ν = 1. Show that (Y x

t = (Xx
t )

2, Bt)t∈[0,∞) is a strong solution to the equation
{

dY x
t =

(

−2λYt + σ2
)

dt+ 2σ
√

Yt dBt in (0,∞),

Y x
0 = x2.

(viii) Let µ, σ ∈ R. Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion. For every
x ∈ R, use the stochastic exponential to find a strong solution (Xx

t , Bt)t∈[0,∞) to the equation
{

dXx
t = µ dt+ σXx

t dBt in (0,∞),

Xx
0 = x.

(ix) Let (Mt)t∈[0,∞) be a continuous local martingale vanishing at zero, and let (L0
t )t∈[0,∞) denote

the local time of (Mt)t∈[0,∞) at zero.
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(a) Prove that

inf{t ∈ [0,∞) : L0
t > 0} = inf{t ∈ [0,∞) : 〈M〉t > 0} almost surely.

(b) Prove that if α ∈ (0, 1) and (Mt)t∈[0,∞) is not identically zero, then (|Mt|
α)t∈[0,∞) is not

a semimartingale.


