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These notes are based heavily on notes by Jan Obłój and Alison Etheridge from

previous years’ courses, and the book by Jean-François Le Gall, Brownian motion,

martingales, and stochastic calculus, Springer 2016. The first five chapters of that

book cover everything in the course (and more). Other useful references (in no

particular order) include:

1. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, Springer

(2nd ed.), 1991, Chapters 1-3.

2



2. D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer

(Revised 3rd ed.), 2001, Chapters 0-4.

3. R. Durrett, Stochastic Calculus: A practical introduction, CRC Press, 1996.

Sections 1.1 - 2.10.

4. F. Klebaner, Introduction to Stochastic Calculus with Applications, 3rd edition,

Imperial College Press, 2012. Chapters 1, 2, 3.1–3.11, 4.1-4.5, 7.1-7.8, 8.1-8.7.

5. J. M. Steele, Stochastic Calculus and Financial Applications, Springer, 2010.

Chapters 3 - 8.

6. B. Oksendal, Stochastic Differential Equations: An introduction with applica-

tions, 6th edition, Springer (Universitext), 2007. Chapters 1 - 3.

7. S. Shreve, Stochastic calculus for finance, Vol 2: Continuous-time models,

Springer Finance, Springer-Verlag, New York, 2004. Chapters 3 - 4.

8. S.N. Cohen and R.J. Elliott, Stochastic Calculus and Applications, Birkhäuser,

2015, Chapters 1-5, 8-12

9. L.C.G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales,

Cambridge, 2000, Vol. 2, Chapters 1-6

To revise material from B8.1, you might want to look at

1. D. Williams, Probability with Martingales, Cambridge, 1991

2. M. Capińksi and E. Kopp, Measure, Integral and Probability, Springer, 1999

The appendices gather together some useful results that we take as known, or

are too lazy to prove in the main text

1 Introduction

Our topic is part of the huge field devoted to the study of stochastic processes.

Since first year, you’ve had the notion of a random variable. Formally, we can

think of this in two parts:

• a probability space (Ω,F ,P), describing states of the world ω ∈ Ω, events

A ∈ F and their probabilities P, and

• mappings X : (Ω,F )→ (E,E ), giving the value of the random variable in

each state of the world.

We need to assume X : Ω → E is a measurable mapping, so that for each e ∈ E ,

X−1(e) ∈ F and so, in particular, we can assign a probability to the event that

X ∈ e. Often (E,E ) is just (R,B(R)) (where B(R) is the Borel sets on R) and

this just says that for each x ∈ R we can assign a probability to the event {X ≤ x}.
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Definition 1.1. A stochastic process, indexed by some set T , is a collection of

random variables {Xt}t∈T , defined on a common probability space (Ω,F ,P) and

taking values in a common state space (E,E ).

For us, T will generally be either [0,∞) or [0,T ] and we think of Xt as a random

quantity that evolves with time.

When we model deterministic quantitities that evolve with (continuous) time,

we often appeal to ordinary differential equations as models. In this course we

develop the ‘calculus’ necessary to develop an analogous theory of stochastic (or-

dinary) differential equations.

An ordinary differential equation might take the form

dX(t) = a(t,X(t))dt,

for a suitably nice function a. A stochastic equation is often formally written as

dX(t) = a(t,X(t))dt +b(t,X(t))dBt ,

where the second term on the right models ‘noise’ or fluctuations. Equivalently,

can write this in an integral form:

X(t) = X(0)+
∫ t

0
a(s,X(s))ds+

∫ t

0
b(s,X(s))dBs.

Here (Bt)t≥0 is an object that we call Brownian motion. We shall consider what

appear to be more general driving noises, but the punchline of the course is that

under rather general conditions they can all be built from Brownian motion. Indeed

if we added possible (random) ‘jumps’ in X(t), we’d capture essentially the most

general theory. We are not going to allow jumps, so we’ll be thinking of settings

in which our stochastic equation has a continuous solution t 7→ Xt , and Brownian

motion will be a fundamental object.

There are a variety of ways for us to look at Brownian motion. One good way

to start1 is as a extension to ‘processes’ of Gaussian random variables.

2 An overview of Gaussian variables

Brownian motion is a special example of a Gaussian process – or at least a version

of one that is assumed to have continuous sample paths. In this section we give an

overview of Gaussian variables, and in what follows we give a direct construction

of Brownian motion, due to Lévy, from which continuity of sample paths is an

immediate consequence.

1This is effectively how Einstein thought of it in his original 1905 paper.
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2.1 Gaussian variables in finite dimension

Definition 2.1. A random variable X is called a centred standard Gaussian, or

standard normal, if its distribution has density

pX(x) =
1√
2π

e−
x2

2 x ∈ R

with respect to Lebesgue measure. We write X ∼ N (0,1).

It is elementary to calculate its Laplace transform:

E[eλX ] = e
λ2

2 , λ ∈ R,

or extending to complex values the characteristic function (≈ Fourier transform)

E[eiξ X ] = e
−ξ 2

2 , ξ ∈ R.

We say Y has Gaussian (or normal) distribution with mean m and variance σ2,

written Y ∼ N (m,σ2), if Y = σX +m where X ∼ N (0,1). Then

E[eiξY ] = exp
(

imξ − σ2ξ 2

2

)

, ξ ∈ R,

and if σ > 0, the density on R is

pY (x) =
1√

2πσ
e
− (x−m)2

2σ2 , x ∈ R.

We think of a constant ‘random’ variable as being a degenerate Gaussian. Then

the space of Gaussian variables (resp. distributions) is closed under convergence in

probability (resp. distribution).

Proposition 2.2. Let (Xn) be a sequence of Gaussian random variables with Xn ∼
N (mn,σ

2
n ), which converges in distribution to a random variable X. Then

(i) X is also Gaussian, X ∼ N (m,σ2) with m = limn→∞ mn, σ2 = limn→∞ σ2
n ;

and

(ii) if (Xn)n≥1 converges to X in probability, then the convergence is also in Lp

for all 1 ≤ p < ∞.

Proof. Convergence in distribution is equivalent to saying that the characteristic

functions converge:

E

[

eiξ Xn

]

= exp(imnξ −σ2
n ξ 2/2)−→ E

[

eiξ X
]

, ξ ∈ R. (1)

Taking the modulus we see that the sequence exp(−σ2
n ξ 2/2) converges, which in

turn implies that σ2
n → σ2 ∈ [0,∞) (where we ruled out the case σn → ∞ since the
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limit has to be the modulus of a characteristic function and so, in particular, has to

be continuous). We deduce that

eimnξ −→ e
1
2

σ2ξ 2

E
[
eiξ X

]
, ξ ∈ R.

We now argue that this implies that the sequence mn converges to some finite m.

Suppose first that the sequence {mn}n≥1 is bounded, and consider any two conver-

gent subsequences, converging to m and m′ say. Then rearranging (1) yields m=m′

and so the sequence converges.

Now suppose that limsupn→∞ mn =∞ (the case liminfn→∞ mn =−∞ is similar).

There exists a subsequence {mnk
}k≥1 which tends to infinity. Given M, for k large

enough that mnk
> M,

P[Xnk
≥ M]≥ P[Xnk

≥ mnk
] =

1

2
,

and so using convergence in distribution

P[X ≥ M]≥ limsup
k→∞

P[Xnk
≥ M]≥ 1

2
, for any M > 0.

This is clearly impossible for any fixed (real valued) random variable X and gives

us the desired contradiction. This completes the proof of (i).

To show (ii), observe that the convergence of σn and mn implies, in particular, that

sup
n

E
[
eθXn

]
= sup

n

eθmn+θ 2σ2
n /2 < ∞, for any θ ∈ R.

Since exp(|x|)≤ exp(x)+exp(−x), this remains finite if we take |Xn| instead of Xn.

This implies that supnE[|Xn|p]< ∞ for any p ≥ 1 and hence also

sup
n

E[|Xn −X |p]< ∞, ∀p ≥ 1. (2)

Fix p ≥ 1. Then the sequence |Xn −X |p converges to zero in probability (by as-

sumption) and is uniformly integrable, since, for any q > p,

E[|Xn −X |p1{|Xn−X |p>r}]≤
1

r(q−p)/p
E[|Xn −X |q]→ 0 as r → ∞

(by equation (2) above). It follows that we also have convergence of Xn to X in

Lp.

2.2 Gaussian vectors and spaces

So far we’ve considered only real-valued Gaussian variables.

Definition 2.3. A random vector taking values in Rd is called Gaussian if and only

if

〈u,X〉 := uTX =
d

∑
i=1

uiXi is Gaussian for all u ∈ Rd .
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It follows immediately that the image of a Gaussian vector under a linear trans-

formation is also Gaussian: if X ∈ Rd is Gaussian and A is an m× d matrix, then

AX is Gaussian in Rm.

Lemma 2.4. Let X be a Gaussian vector and define mX := (E[X1], . . . ,E[Xd]) and

ΓX :=
(
cov(Xi,X j)1≤i, j≤d

)
, the mean vector and the covariance matrix respec-

tively. Then qX(u) := uTΓX u is a non-negative quadratic form and

uTX ∼ N
(
uTmX ,qX(u)

)
, u ∈ Rd . (3)

Proof. Clearly E[uTX ] = uTmX and

var(uTX)=E





(
d

∑
i=1

ui(Xi −E[Xi])

)2


= ∑
1≤i, j≤d

uiu jcov(Xi,X j)= uTΓX u= qX(u),

which also shows that qX(u)≥ 0.

The identification in (3) is equivalent to

E

[

ei〈u,X〉
]

= ei〈u,mX 〉− 1
2

qX (u), u ∈ Rd .

From this we derive easily the following important fact:

Proposition 2.5. Let X be a Gaussian vector and ΓX its covariance matrix. Then

X1, . . . ,Xd are independent if and only if ΓX is a diagonal matrix (i.e. the variables

are pairwise uncorrelated).

Warning: It is crucial to assume that the vector X is Gaussian and not just that

X1, . . . ,Xd are Gaussian. For example, consider X1 ∼N (0,1) and ε an independent

random variable with P[ε = 1] = 1/2 = P[ε = −1]. Let X2 := εX1. Then X2 ∼
N (0,1) and cov(X1,X2) = 0, while clearly X1,X2 are not independent.

By definition, a Gaussian vector X remains Gaussian if we add to it a determin-

istic vector m ∈ Rd . Hence, without loss of generality, by considering X −mX , it

suffices to consider centred Gaussian vectors. The variance-covariance matrix ΓX

is symmetric and non-negative definite (as observed above). Conversely, for any

such matrix Γ, there exists a Gaussian vector X with ΓX = Γ, and, indeed, we can

construct it as a linear transformation of a Gaussian vector with i.i.d. coordinates.

Theorem 2.6. Let Γ be a symmetric non-negative definite d×d matrix. Let (ε1, . . . ,εd)
be an orthonormal basis in Rd which diagonalises Γ, i.e. Γεi = λiεi for some

λ1 ≥ λ2 ≥ . . .≥ λr > 0 = λr+1 = . . .= λd , where 1 ≤ r ≤ d is the rank of Γ.

(i) A centred Gaussian vector X with covariance matrix ΓX = Γ exists.

(ii) Further, any such vector can be represented as

X =
r

∑
i=1

Yiεi, (4)

where Y1, . . . ,Yr are independent Gaussian random variables with Yi ∼N (0,λi).
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(iii) If r = d, then X admits a density given by

pX(x) =
1

(2π)d/2

1
√

det(Γ)
exp
(

− 1

2
xT Γ−1x

)

, x ∈ Rd .

Proof. Let A be a matrix whose columns are εi so that ΓX = AΛAT where Λ is the

diagonal matrix with entries λi on the diagonal. Let Z1, . . . ,Zn be i.i.d. standard

centred Gaussian variables and Yi =
√

λiZi. Let X be given by (4), i.e. X = AY .

Then

〈u,X〉= 〈u,AY 〉= 〈AT u,Y 〉=
d

∑
i=1

√

λi〈u,εi〉Zi

is centred Gaussian. Its variance is given by

var(〈u,X〉) =
d

∑
i=1

λi(u
Tεi)

2 =
d

∑
i=1

uTεiλiε
T
i u = (AT u)T ΛAT u = uT AΛAT u = uT Γu,

and (i) is proved.

Conversely, suppose X is a centred Gaussian vector with covariance matrix Γ and

let Y = AT X . For u ∈ Rd , 〈u,Y 〉= 〈Au,X〉 is centred Gaussian with variance

(Au)T ΓAu = uT AT ΓAu = uT Λu

and we conclude that Y is also a centred Gaussian vector with covariance matrix

Λ. Independence between Y1, . . . ,Yd then follows from Proposition 2.5. It follows

that when r = d, Y admits a density on Rd given by

pY (y) =
1

(2π)d/2

1
√

det(Λ)
exp
(

− 1

2
yT Λ−1y

)

, y ∈ Rd .

Change of variables, together with det(Λ) = det(Γ) and |det(A)| = 1 gives the

desired density for x.

Once we know that we can write X = ∑r
i=1Yiεi in this way, we have an easy

way to compute conditional expectations within the family of random variables

which are linear transformations of a Gaussian vector X . To see how it works,

suppose that X is a Gaussian vector in Rd and define Z := (X1−∑d
i=2 aiXi) with the

coefficients ai chosen in such a way that Z and Xi are uncorrelated for i = 2, . . . ,d;

that is

cov(X1,Xi)−
d

∑
j=2

a jcov(X j,Xi) = 0, 2 ≤ i ≤ d.

Evidently Z is Gaussian (it is a linear combination of Gaussians) and since it is

uncorrelated with X2, . . . ,Xd , by Proposition 2.5, it is independent of them. Then

E[X1|σ(X2, . . . ,Xd)] = E

[

Z +
d

∑
i=2

aiXi

∣
∣
∣σ(X2, . . . ,Xd)

]

= E[Z|σ(X2, . . . ,Xd)]+E

[ d

∑
i=2

aiXi

∣
∣
∣σ(X2, . . . ,Xd)

]

=
d

∑
i=2

aiXi,
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where we have used independence to see that E[Z|σ(X2, . . . ,Xd)] = E[Z] = 0.

The most striking feature is that E[X |σ(K)] is an element of the vector space

K itself and not a general σ(K)-measurable random variable. In particular, if

(X1,X2,X3) is a Gaussian vector then the best (in the L2 sense, see Appendix A.7)

approximation of X1 in terms of X2,X3 is in fact a linear function of X1 and X2.

This extends to the more general setting of Gaussian spaces to which we now turn.

2.3 Gaussian spaces

Note that to a Gaussian vector X in Rd , we can associate the vector space spanned

by its coordinates:
{

d

∑
i=1

uiXi : ui ∈ R

}

,

and by definition all elements of this space are Gaussian random variables. This is

a simple example of a Gaussian space and it is useful to think of such spaces in

much greater generality.

Definition 2.7. A closed linear subspace H ⊂ L2(Ω,F ,P) is called a Gaussian

space if all of its elements are centred Gaussian random variables.

In analogy to Proposition 2.5, two elements of a Gaussian space are indepen-

dent if and only if they are uncorrelated, which in turn is equivalent to being or-

thogonal in L2. More generally we have the following result.

Theorem 2.8. Let H1,H2 be two Gaussian subspaces of a Gaussian space H. Then

H1,H2 are orthogonal if and only if σ(H1) and σ(H2) are independent2.

The theorem follows from monotone class arguments, which (see Appendix A.1)

reduce it to checking that it holds true for any finite subcollection of random vari-

ables – which is Proposition 2.5.

Corollary 2.9. Let H be a Gaussian space and K a closed subspace. Let pK denote

the orthogonal projection onto K. Then for X ∈ H

E[X |σ(K)] = pK(X). (5)

Proof. Let Y = X − pK(X) which, by Theorem 2.8 is independent of σ(K). Hence

E[X |σ(K)] = E[pK(X)|σ(K)]+E[Y |σ(K)] = pK(X)+E[Y ] = pK(X),

where we have used that Y is a centred Gaussian and so has zero mean.

Warning: For an arbitrary X ∈ L2 we would have

E[X |σ(K)] = pL2(Ω,σ(K),P)(X).

It is a special property of Gaussian random variables X that it is enough to consider

the projection onto the much smaller space K.

2Orthogonality here is in the L2 sense, that is, E[X1X2] = 0 for all X1 ∈ H1,X2 ∈ H2. In other

words, the spaces are made up of uncorrelated (and hence independent) Gaussian random variables.
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3 Random processes

3.1 Gaussian processes

Definition 3.1. A stochastic process (Xt : t ≥ 0) is called a (centred) Gaussian

process if any finite linear combination of its coordinates is a (centred) Gaussian

variable.

Equivalently, X is a centred Gaussian process if for any n ∈ N and 0 ≤ t1 <
t2 < .. . < tn, (Xt1 ,Xt2 , . . . ,Xtn) is a (centred) Gaussian vector. It follows that the

distribution of a centred Gaussian process on B(R[0,∞)), is characterised by the

covariance function, or Kernel, Γ : [0,∞)2 → R, i.e.

Γ(s, t) := cov(Xt ,Xs).

For any fixed n-tuple (Xt1 , . . . ,Xtn) the covariance matrix (Γ(ti, t j)) has to be sym-

metric and positive semi-definite. As the following result shows, the converse also

holds – for any such function, Γ, we may construct an associated Gaussian process.

Theorem 3.2. Let Γ : [0,∞)2 → R be symmetric and such that for any n ∈ N and

0 ≤ t1 < t2 < .. . < tn,

∑
1≤i, j,≤n

uiu jΓ(ti, t j)≥ 0, u ∈ Rd .

Then there exists a centred Gaussian process with covariance function Γ.

This result will follow from the (more general) Daniell–Kolmogorov Theo-

rem 3.8 below.

Recalling from Proposition 2.2 that an L2-limit of Gaussian variables is also

Gaussian, we observe that the closed linear subspace of L2 spanned by the variables

(Xt : t ≥ 0) is a Gaussian space.

3.2 Measure theory

We now wish to extend our thinking to random processes. This requires a bit of

measure theoretic care to make sure everything is well defined. Recall that B(R)
is the Borel σ -algebra on R, that is, the smallest σ -algebra containing all open

sets/such that all continuous functions are measurable.

Definition 3.3. The mapping t 7→ Xt(ω) for a fixed ω ∈ Ω, represents a realisation

of our stochastic process, called a sample path or trajectory. We shall assume that

(t,ω) 7→ Xt(ω) :
(
[0,∞)×Ω,B([0,∞))⊗F

)
7→
(
R,B(R)

)

is measurable (i.e. ∀A ∈ B(R), {(t,ω) : Xt ∈ A} is in the product σ -algebra

B([0,∞))⊗F . Our stochastic process is then said to be measurable.
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In discrete time, we often made statements which held ‘almost surely’, that is,

up to a set of measure zero. In continuous time, we need to be more careful with

what this means:

Definition 3.4. Let X ,Y be two stochastic processes defined on a common proba-

bility space (Ω,F ,P) .

i. We say that X is a modification of Y if, for all t ≥ 0, we have Xt = Yt a.s.;

ii. We say that X and Y are indistinguishable if P[Xt =Yt , for all 0≤ t <∞] = 1.

Example 3.5. Let T ∼U([0,1]) be a uniform random variable, and take the ran-

dom process Xt = 1t=T . Then Yt := 0 is a modification of Xt , as Yt = Xt a.s. for each

t. However, Y and X are not indistinguishable, as X 6= Y for some t with positive

probability (in fact, with probability 1).

If X and Y are modifications of one another then, in particular, they have the

same finite dimensional distributions,

P [(Xt1 , . . . ,Xtn) ∈ A] = P [(Yt1 , . . . ,Ytn) ∈ A]

for all measurable sets A, but indistinguishability is a much stronger property.

Indistinguishability takes the sample path as the basic object of study, so that

we could think of (Xt(ω), t ≥ 0) (the path) as a random variable taking values in the

space E [0,∞) (of all possible paths). This state space then has to be endowed with

a σ -algebra of measurable sets. For definiteness, we take real-valued processes, so

E = R.

Definition 3.6. An n-dimensional cylinder set in R[0,∞) is a set of the form

C =
{

ω ∈ R[0,∞) :
(
ω(t1), . . . ,ω(tn)

)
∈ A
}

for some 0 ≤ t1 < t2 . . . < tn and A ∈ B(Rn).

Let C be the family of all finite-dimensional cylinder sets and B(R[0,∞)) the

σ -algebra it generates. This is small enough to be able to build probability mea-

sures on B(R[0,∞)) using Carathéodory’s Theorem (see B8.1). On the other hand

B(R[0,∞)) only contains events which can be defined using at most countably many

coordinates. In particular, the set
{

ω ∈ R[0,∞) : ω(t) is continuous
}

is not B(R[0,∞))-measurable.

We will have to do some work to show that many processes can be assumed to

be continuous, or right continuous. The sample paths are then fully described by

their values at times t ∈ Q, which will greatly simplify the study of quantities of

interest such as sup0≤s≤t |Xs| or τ0(ω) = inf{t ≥ 0 : Xt(ω)> 0}.

A monotone class argument (see Appendix A.1) will tell us that a probability

measure on B(R[0,∞)) is characterised by its finite-dimensional distributions – so

if we can take continuous paths, then we only need to find the probabilities of

cylinder sets to characterise the distribution of the process.
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3.3 Constructing distributions on
(
R[0,∞),B(R[0,∞))

)

In this section, we’re going to provide a very general result about constructing

continuous time stochastic processes and a criterion due to Kolmogorov which

gives conditions under which there will be a version of the process with continuous

paths.

Let T be the set of finite increasing sequences of non-negative numbers, i.e.

t ∈ T if and only if t = (t1, t2, . . . , tn) for some n and 0 ≤ t1 < t2 < .. . ,< tn.

Suppose that for each t ∈ T of length n we have a probability measure Qt on

(Rn,B(Rn)). The collection (Qt : t ∈ T) is called a family of finite-dimensional

(marginal) distributions.

Definition 3.7. A family of finite dimensional distributions is called consistent if

for any t = (t1, t2, . . . , tn) ∈ T and 1 ≤ j ≤ n

Qt(A1 ×A2 × . . .×A j−1 ×R×A j+1 × . . .×An)

=Qs(A1 ×A2 × . . .×A j−1 ×A j+1 × . . .×An)

where Ai ∈ B(R) and s := (t1, t2, . . . , t j−1, t j+1, . . . , tn).

(In other words, if we integrate out over the distribution at the jth time point

then we recover the corresponding marginal for the remaining lower dimensional

vector.)

If we have a probability measure Q on
(
R[0,∞),B(R[0,∞))

)
then it defines a

consistent family of marginals via

Qt(A) =Q({ω ∈ R[0,∞) : (ω(t1), . . . ,ω(tn)) ∈ A})

where t = (t1, t2, . . . , tn), A ∈ B(Rn), and we note that the set in question is in

B(R[0,∞)) as it depends on finitely many coordinates. But we’d like a converse –

if I give you Qt, when does there exist a corresponding measure Q?

Theorem 3.8 (Daniell–Kolmogorov Extension Theorem). Let {Qt : t ∈ T} be a

consistent family of finite-dimensional distributions. Then there exists a probability

measure P on
(
R[0,∞),B(R[0,∞))

)
such that for any n, t = (t1, . . . , tn) ∈ T and A ∈

B(Rn),
Qt(A) = P[{ω ∈ R[0,∞) : (ω(t1), . . . ,ω(tn)) ∈ A}]. (6)

We won’t prove this (see Appendix), but notice that (6) defines P on the cylin-

der sets and so if we have countable additivity then the proof reduces to an appli-

cation of Carathéodory’s extension theorem. Uniqueness is a consequence of the

Monotone Class Lemma.

This is a remarkably general result, but it doesn’t allow us to say anything

meaningful about the paths of the process. For that we appeal to Kolmogorov’s

criterion.
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Theorem 3.9 (Kolmogorov–Čentsov continuity criterion). Suppose that a stochas-

tic process (Xt : t ≤ T ) defined on (Ω,F ,P) satisfies

E[|Xt −Xs|α ]≤C|t − s|1+β , 0 ≤ s, t ≤ T (7)

for some strictly positive constants α , β and C.

Then there exists X̃ , a modification of X, whose paths are γ-locally Hölder contin-

uous ∀γ ∈ (0,β/α) a.s., i.e.

sup
s,t,∈[0,T ]

|X̃t − X̃s|
|t − s|γ < ∞ a.s. (8)

In particular, the sample paths of X̃ are a.s. continuous (and uniformly continuous

on [0,T ]).

Proof. See appendix (not examinable)

Remark 3.10. Many more results and conditions in this direction are possible. See

for example Cramér and Leadbetter, Stationary and Related Stochastic Processes,

Wiley, 1967.

For example, one can show that for X a Gaussian process with m(t) = E[Xt ]
and Γ(s, t) = cov(Xs,Xt), if dm/dt and ∂ 2Γ/∂ s∂ t exist and are sufficiently con-

tinuous, then there is a modification of X which has continuously differentiable

paths.

4 Brownian Motion

4.1 Definition of Brownian motion

Our fundamental building block will be Brownian motion. It is a centred Gaussian

process, so we can characterise it in terms of its covariance structure. It is often

described as an ‘infinitesimal random walk’, so to motivate the definition, we take

a quick look at simple (discrete time) random walk.

Definition 4.1. The discrete time stochastic process {Sn}n≥0 is a symmetric simple

random walk under the measure P if Sn = ∑n
i=1 ξi, where the ξi can take only the

values ±1, and are i.i.d. under P with P[ξi =−1] = 1/2 = P[ξi = 1].

Lemma 4.2. {Sn}n≥0 is a P-martingale (with respect to the natural filtration) and

cov(Sn,Sm) = n∧m.

To obtain a ‘continuous’ version of simple random walk, we appeal to the Cen-

tral Limit Theorem. Since E[ξi] = 0 and var(ξi) = 1, we have

P

[
Sn√

n
≤ x

]

→
∫ x

−∞

1√
2π

e−y2/2dy as n → ∞.

13



More generally,

P

[
S[nt]√

n
≤ x

]

→
∫ x

−∞

1√
2πt

e−y2/2tdy as n → ∞,

where [nt] denotes the integer part of nt.

Heuristically at least, passage to the limit from simple random walk suggests

the following definition of Brownian motion.

Definition 4.3 (Brownian motion). A real-valued stochastic process {Bt}t≥0 is a

P-Brownian motion (or a P-Wiener process) if for some real constant σ , under P,

i. for each s ≥ 0 and t > 0 the random variable Bt+s − Bs has the normal

distribution with mean zero and variance σ2t,

ii. for each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤ ·· · ≤ tn, the random variables

{Btr −Btr−1
} are independent,

iii. B0 = 0,

iv. Bt is continuous in t ≥ 0.

When σ2 = 1, we say that we have a standard Brownian motion.

Notice in particular that for s < t,

Γ(s, t) = cov(Bs,Bt) = E[BsBt ] = E
[
B2

s +Bs(Bt −Bs)
]
= E[B2

s ] = s (= s∧ t).

Γ is not differentiable, suggesting that neither is the path of B.

We can write down the finite dimensional distributions using the independence

of increments. They admit a density with respect to Lebesgue measure. We write

p(t,x,y) for the transition density

p(t,x,y) =
1√
2πt

exp

(

−(x− y)2

2t

)

.

This is the density (with respect to x), of Bt given B0 = y. For 0 = t0 ≤ t1 ≤ t2 ≤
. . .≤ tn, writing x0 = 0, the joint probability density function of Bt1 , . . . ,Btn is

f (x1, . . . ,xn) =
n

∏
1

p(t j − t j−1,x j−1,x j).

Although the sample paths of Brownian motion are continuous, it does not

mean that they are nice in any other sense. In fact the behaviour of Brownian

motion is distinctly odd. Here are just a few of its strange behavioural traits.

i. Although {Bt}t≥0 is continuous everywhere, it is (with probability one) dif-

ferentiable nowhere.
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ii. Brownian motion will eventually hit any and every real value no matter how

large, or how negative. No matter how far above the axis, it will (with prob-

ability one) be back down to zero at some later time.

iii. Once Brownian motion hits a value, it immediately hits it again (uncount-

ably!) infinitely often, and then again from time to time in the future.

iv. It doesn’t matter what scale you examine Brownian motion on, it looks just

the same. Brownian motion is a fractal process.

The last property is really a consequence of the construction of the process. We’ll

formulate the second and third more carefully later.

We could recover the existence of Brownian motion from the general principles

outlined so far (Daniell-Kolmogorov Theorem and the Kolmogorov continuity cri-

terion plus what we know about Gaussian processes), but we are now going to take

a short digression to describe a beautiful (and useful) construction due to Lévy.

The idea is that we can simply produce a path of Brownian motion by direct

polygonal interpolation. We require just one calculation.

Lemma 4.4. Suppose that {Bt}t≥0 is standard Brownian motion. Conditional on

Bt1 = x1, the probability density function of Bt1/2 is

pt1/2(x),

√
2

πt1
exp

(

−1

2

((
x− 1

2
x1

)2

t1/4

))

.

In other words, the conditional distribution is a normally distributed random

variable with mean x1/2 and variance t1/4. The proof is an exercise.

The construction: Without loss of generality we take the range of t to be [0,1].
Lévy’s construction builds (inductively) a polygonal approximation to the Brown-

ian motion from a countable collection of independent normally distributed random

variables with mean zero and variance one. We index them by the dyadic points of

[0,1], a generic variable being denoted ξ (k2−n) where n∈N and k ∈ {0,1, . . . ,2n}.

The induction begins with

X1(t) = tξ (1).

Thus X1 is a linear function on [0,1].
The nth process, Xn, is linear in each interval [(k− 1)2−n,k2−n] is continuous

in t and satisfies Xn(0) = 0. It is thus determined by the values {Xn(k2−n),k =
1, . . . ,2n}.

The inductive step: We take

Xn+1

(

2k2−(n+1)
)

= Xn

(

2k2−(n+1)
)

= Xn

(
k2−n

)
.
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We now determine the appropriate value for Xn+1

(
(2k−1)2−(n+1)

)
. Conditional

on Xn+1

(
2k2−(n+1)

)
−Xn+1

(
2(k−1)2−(n+1)

)
, Lemma 4.4 tells us that

Xn+1

(

(2k−1)2−(n+1)
)

−Xn+1

(

2(k−1)2−(n+1)
)

should be normally distributed with mean

1

2

(

Xn+1

(

2k2−(n+1)
)

−Xn+1

(

2(k−1)2−(n+1)
))

and variance 2−(n+2).

Now if X ∼ N (0,1), then aX +b ∼ N (b,a2) and so we take

Xn+1

(

(2k−1)2−(n+1)
)

−Xn+1

(

2(k−1)2−(n+1)
)

= 2−(n/2+1)ξ
(

(2k−1)2−(n+1)
)

+
1

2

(

Xn+1

(

2k2−(n+1)
)

−Xn+1

(

2(k−1)2−(n+1)
))

.

In other words

Xn+1

(

(2k−1)2−(n+1)
)

=
1

2
Xn

(
(k−1)2−n

)

+
1

2
Xn

(
k2−n

)
+2−(n/2+1)ξ

(

(2k−1)2−(n+1)
)

= Xn

(

(2k−1)2−(n+1)
)

+2−(n/2+1)ξ
(

(2k−1)2−(n+1)
)

, (9)

where the last equality follows by linearity of Xn on [(k−1)2−n,k2−n].
The construction is illustrated in the following figure

X

Time

X1(1) = X2(1) = X3(1)
X2(1/2) = X3(1/2)

X3(3/4)

X3(1/4)

Figure 1: Three steps in Lévy’s construction

Brownian motion will be the process constructed by letting n increase to infinity.

To check that it exists we need some technical lemmas. The proofs are adapted

from Knight (1981).
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Lemma 4.5. The sequence Xn(ω , ·) converges uniformly (in t), for almost all ω .

Proof: Notice that maxt |Xn+1(t)−Xn(t)| will be attained at a vertex, that is for

t ∈ {(2k−1)2−(n+1),k = 1,2, . . . ,2n} and using (9),

P

[

max
t

|Xn+1(t)−Xn(t)| ≥ 2−n/4
]

= P

[

max
1≤k≤2n

∣
∣
∣ξ
(

(2k−1)2−(n+1)
)∣
∣
∣≥ 2n/4+1

]

≤ 2nP

[

|ξ (1)| ≥ 2n/4+1
]

.

Now

P [ξ (1)≥ x]≤ 1

x
√

2π
e−x2/2,

(exercise), and, combining this with the fact that

exp
(

−2(n/2+1)
)

< 2−2n+2,

we obtain that for n ≥ 4

2nP

[

ξ (1)≥ 2n/4+1
]

≤ 2n

2n/4+1

1√
2π

exp
(

−2(n/2+1)
)

≤ 2n

2n/4+1
2−2n+2 < 2−n.

Consider now for k > n,

P

[

max
t

|Xk(t)−Xn(t)| ≥ 2−n/4+3
]

= 1−P

[

max
t

|Xk(t)−Xn(t)| ≤ 2−n/4+3
]

and

P

[

max
t

|Xk(t)−Xn(t)| ≤ 2−n/4+3
]

≥ P

[
k−1

∑
j=n

max
t

∣
∣X j+1(t)−X j(t)

∣
∣≤ 2−n/4+3

]

≥ P

[

max
t

∣
∣X j+1(t)−X j(t)

∣
∣≤ 2− j/4, j = n, . . . ,k−1

]

≥ 1−
k−1

∑
j=n

2− j ≥ 1−2−n+1.

Finally we have that

P

[

max
t

|Xk(t)−Xn(t)| ≥ 2−n/4+3
]

≤ 2−n+1,

for all k ≥ n. The events on the left are increasing (since the maximum can only

increase by the addition of a new vertex) so

P

[

max
t

|Xk(t)−Xn(t)| ≥ 2−n/4+3 for some k > n
]

≤ 2−n+1.
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In particular, for ε > 0,

lim
n→∞

P [For some k > n and t ≤ 1, |Xk(t)−Xn(t)| ≥ ε ] = 0,

which proves the lemma. �

To complete the proof of existence of the Brownian motion, we must check the

following.

Lemma 4.6. Let X(t) = limn→∞ Xn(t) if the limit exists uniformly and zero other-

wise. Then X(t) satisfies the conditions of Definition 4.3 (for t restricted to [0,1]).

Proof: By construction, the properties i–iii of Definition 4.3 hold for the ap-

proximation Xn(t) restricted to Tn = {k2−n,k = 0,1, . . . ,2n}. Since we don’t change

Xk on Tn for k > n, the same must be true for X on ∪∞
n=1Tn. A uniform limit of con-

tinuous functions is continuous, so condition iv holds and now by approximation

of any 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ 1 from within the dense set ∪∞
n=1Tn we see that in

fact all four properties hold without restriction for t ∈ [0,1]. �

4.2 Wiener Measure

Let C(R+,R) be the space of continuous functions from [0,∞) to R. Given a

Brownian motion (Bt : t ≥ 0) on (Ω,F ,P), consider the map

Ω →C(R+,R), given by ω 7→ (Bt(ω) : t ≥ 0) (10)

which is measurable w.r.t. B(C(R+,R)) – the smallest σ -algebra such that the

coordinate mappings (i.e. (ωt : t ≥ 0) 7→ ω(t0) for a fixed t0) are measurable. (In

fact B(C(R+,R)) is also the Borel σ -algebra generated by the topology of uniform

convergence on compacts.)

Definition 4.7. The Wiener measure W is the image of P under the mapping

in (10); it is the probability measure on the space of continuous functions such

that the canonical process, i.e. (Bt(ω) = ω(t), t ≥ 0), is a Brownian motion.

In other words, W is the unique probability measure on (C(R+,R),B(C(R+,R)))
such that

i. W({ω ∈C(R+,R),ω(0) = 0}) = 1;

ii. for any n ≥ 1, ∀0 = t0 < t1 < .. . < tn, A ∈ B(Rn)

W({ω ∈C(R+,R) : (ω(t1), . . . ,ω(tn)) ∈ A})

=
∫

A

1

(2π)
n
2

dy1 · · ·dyn
√

t1(t2 − t1) . . .(tn − tn−1)
exp
(

−
n

∑
i=1

(yi − yi−1)
2

2(ti − ti−1)

)

,

where y0 := 0.

(Uniqueness follows from the Monotone Class Lemma, since B(C(R+,R))) is

generated by finite dimensional projections.)
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4.3 Extensions and first properties

Definition 4.8. Let µ be a probability measure on Rd . A d-dimensional stochastic

process (Bt : t ≥ 0) on (Ω,F ,P) is called a d-dimensional Brownian motion with

initial distribution µ if

i. P[B0 ∈ A] = µ(A), A ∈ B(Rd);

ii. ∀0 ≤ s ≤ t the increment (Bt −Bs) is independent of σ(Bu : u ≤ s) and is

normally distributed with mean 0 and covariance matrix (t − s)× Id;

iii. B has a.s. continuous paths.

Writing the d-dimensional Brownian motion as Bt = (B
(1)
t , . . . ,B

(d)
t ), the co-

ordinate processes (B
(i)
t ), 1 ≤ i ≤ d, are independent one-dimensional Brownian

motions. If µ({x}) = 1 for some x ∈ Rd , we say that B starts at x.

Proposition 4.9. Let B be a standard real-valued Brownian motion. Then

i. −Bt is also a Brownian motion, (symmetry)

ii. ∀c ≥ 0, cBt/c2 is a Brownian motion, (scaling)

iii. X0 = 0, Xt := tB 1
t

is a Brownian motion, (time reversal)

iv. ∀s ≥ 0, B̃t = Bt+s −Bs is a Brownian motion independent of σ(Bu : u ≤ s),
(simple Markov property).

The proof is an exercise.

4.4 Basic properties of Brownian sample paths

From now on, when we say “Brownian motion”, we mean a standard real-valued

Brownian motion.

We know that t 7→ Bt(ω) is almost surely continuous.

Exercise: Use the Kolmogorov continuity criterion to show that Brownian motion

admits a modification which is locally Hölder continuous of order γ for any 0 <
γ < 1/2.

On the other hand, as we have already remarked, the path is actually rather

‘rough’. We’d like to have a way to quantify this roughness.

Definition 4.10. Let π be a partition of [0,T ], N(π) the number of intervals that

make up π and ‖π‖ be the mesh of π (that is the length of the longest interval in

the partition). Write 0 = t0 < t1 < .. . < tN(π) = T for the endpoints of the intervals

of the partition. Then the variation of a function f : [0,T ]→ R is

lim
δ→0

{

sup
π:‖π‖=δ

N(π)

∑
j=1

∣
∣ f (t j)− f (t j−1)

∣
∣

}

.
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If the function is ‘nice’, for example differentiable, then it has bounded varia-

tion. Our ‘rough’ paths will have unbounded variation. To quantify roughness we

can extend the idea of variation to that of p-variation.

Definition 4.11. In the notation of Definition 4.10, the p-variation of a function

f : [0,T ]→ R is defined as

lim
δ→0

{

sup
π:‖π‖=δ

N(π)

∑
j=1

∣
∣ f (t j)− f (t j−1)

∣
∣p

}

.

Notice that for p > 1, the p-variation will be finite for functions that are much

rougher than those for which the variation is bounded. For example, roughly speak-

ing, finite 2-variation will follow if the fluctuation of the function over an interval

of order δ is order
√

δ .

For a typical Brownian path, the 2-variation will be infinite. However, a slightly

weaker analogue of the 2-variation does exist.

Theorem 4.12. Let Bt denote Brownian motion under P and for a partition π of

[0,T ] define

S(π) =
N(π)

∑
j=1

∣
∣Bt j

−Bt j−1

∣
∣2.

Let πn be a sequence of partitions with ‖πn‖→ 0. Then

E

[

|S(πn)−T |2
]

→ 0 as n → ∞. (11)

We say that the quadratic variation process of Brownian motion, which we de-

note by {〈B〉t}t≥0 is 〈B〉t = t. More generally, we can define the quadratic variation

process associated with any bounded continuous martingale.

Definition 4.13. Suppose that {Mt}t≥0 is a bounded continuous P-martingale. The

quadratic variation process associated with {Mt}t≥0 is the process {〈M〉t}t≥0 such

that for any sequence of partitions πn of [0,T ] with ‖πn‖→ 0,

E

[
∣
∣
∣

N(πn)

∑
j=1

∣
∣Mt j

−Mt j−1

∣
∣2 −〈M〉T

∣
∣
∣

2

]

→ 0 as n → ∞. (12)

Remark: We don’t prove it here, but for any continuous martingale, the limit

process 〈M〉 in (12) exists and is independent of the sequence of partitions (up to

integrability assumptions). �

Proof of Theorem 4.12: We expand the expression inside the expectation in (11)

and make use of our knowledge of the normal distribution. Let {tn, j}N(πn)
j=0 denote

the endpoints of the intervals that make up the partition πn. First observe that

|S(πn)−T |2 =
∣
∣
∣
∣
∣

N(πn)

∑
j=1

{∣
∣Btn, j −Btn, j−1

∣
∣2 − (tn, j − tn, j−1)

}
∣
∣
∣
∣
∣

2

.
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It is convenient to write δn, j for
∣
∣Btn, j −Btn, j−1

∣
∣2 − (tn, j − tn, j−1). Then

|S (πn)−T |2 =
N(πn)

∑
j=1

(

δ 2
n, j +2 ∑

k> j

δn, jδn,k

)

.

Note that since Brownian motion has independent increments,

E [δn, jδn,k] = E [δn, j]E [δn,k] = 0 if j 6= k.

Also

E
[
δ 2

n, j

]
= E

[∣
∣Btn, j −Btn, j−1

∣
∣4 −2

∣
∣Btn, j −Btn, j−1

∣
∣2 (tn, j − tn, j−1)+(tn, j − tn, j−1)

2
]

.

For a normally distributed random variable, X , with mean zero and variance λ ,

E[|X |4] = 3λ 2, so we have

E
[
δ 2

n, j

]
= 3(tn, j − tn, j−1)

2 −2(tn, j − tn, j−1)
2 +(tn, j − tn, j−1)

2

= 2(tn, j − tn, j−1)
2

≤ 2‖πn‖(tn, j − tn, j−1) .

Summing over j

E

[∣
∣S(πn)−T

∣
∣2
]

≤ 2

N(πn)

∑
j=1

‖πn‖(tn, j − tn, j−1)

= 2‖πn‖T

→ 0 as n → ∞.

�

Corollary 4.14. Brownian sample paths are of infinite variation on any interval

almost surely.

Corollary 4.15. Brownian sample paths are almost surely nowhere locally Hölder

continuous of order γ > 1
2
.

(The proofs are exercises.)

In fact, a very precise statement is possible.

Theorem 4.16 (Lévy’s modulus of continuity (Not Examinable)). For B a Brown-

ian motion,

limsupε↓0

(

sup
0≤s<t≤1,t−s≤ε

|Bt −Bs|
√

2ε log(1/ε)

)

= 1 a.s.

Consequently, Brownian sample paths are almost surely nowhere locally Hölder

continuous of order γ = 1/2, and the 2-variation is almost surely infinite.
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Proof. Omitted (proof is a straightforward but fiddly calculation of estimates, see,

for example, Revuz & Yor, p30ff)

To study the very small time behaviour of Brownian motion, it is useful to

establish the following 0−1 law.

Theorem 4.17 (Blumenthal’s 0-1 law). Fix a Brownian motion (Bt)t≥0 on (Ω,F ,P).
Recall B0 = 0. For every t ≥ 0 we set Ft := σ(Bu : u ≤ t), so that Fs ⊂ Ft if

s ≤ t. We also set F0+ := ∩s>0Fs. Then the σ -field F0+ is trivial in the sense that

P[A] = 0 or 1 for every A ∈ F0+.

Proof. Let 0< t1 < t2 · · ·< tk and let g :Rk →R be a bounded continuous function.

Also, fix A ∈ F0+. Then by continuity and dominated convergence

E[1Ag(Bt1 , . . . ,Btk)] = lim
ε↓0

E[1Ag(Bt1 −Bε , . . . ,Btk −Bε)].

If 0 < ε < t1, the variables Bt1 −Bε , . . . ,Btk −Bε are independent of Fε (by the

Markov property) and thus also of F0+. It follows that

E[1Ag(Bt1 , . . . ,Btk)] = lim
ε↓0

E[1Ag(Bt1 −Bε , . . . ,Btk −Bε)]

= P[A]E[g(Bt1 , . . . ,Btk)].

We have thus obtained that F0+ is independent of σ(Bt1 , . . . ,Btk). Since this holds

for any finite collection {t1, . . . , tk} of (strictly) positive reals, F0+ is independent

of σ(Bt , t > 0). However, σ(Bt , t > 0) = σ(Bt , t ≥ 0), since B0 is the pointwise

limit of Bt when t → 0. Since F0+ ⊂ σ(Bt , t ≥ 0), we conclude that F0+ is inde-

pendent of itself and so must be trivial.

Proposition 4.18. Let B be a standard real-valued Brownian motion, as above.

i. Then, a.s., for every ε > 0,

sup
0≤s≤ε

Bs > 0 and inf
0≤s≤ε

Bs < 0.

In particular, inf{t > 0 : Bt = 0}= 0 a.s.

ii. For every a ∈ R, let Ta := inf{t ≥ 0 : Bt = a} (with the convention that

inf /0 = ∞). Then a.s. for each a ∈ R, Ta < ∞. Consequently, we have a.s.

limsup
t→∞

Bt =+∞, liminf
t→∞

Bt =−∞.

Remark 4.19. It is not a priori obvious that sup0≤s≤ε Bs is even measurable, since

this is an uncountable supremum of random variables, but since sample paths are

continuous, we can restrict to rational values of s ∈ [0,ε ] so that we are taking the

supremum over a countable set. We implicitly use this observation in what follows.
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Proof. (i) Let εp be a sequence of strictly positive reals decreasing to zero and set

A :=
⋂

p≥0{sup0≤s≤εp
Bs > 0}. Since this is a monotone decreasing intersection,

A ∈ F0+. On the other hand, by monotonicity,

P[A] = lim
p→∞

↓
{

P[ sup
0≤s≤εp

Bs > 0]
}

,

where lim↓ denotes a decreasing limit, and

P[ sup
0≤s≤εp

Bs > 0]≥ P[Bεp
> 0] =

1

2
.

So P[A] ≥ 1/2 and by Blumenthal’s 0-1 law P[A] = 1. Hence a.s. for all ε > 0,

sup0≤s≤ε Bs > 0. Replacing B by −B we obtain P[inf0≤s≤ε Bs < 0] = 1.

(ii) Write

1 = P

[

sup
0≤s≤1

Bs > 0
]

= lim
δ↓0

↑P
[

sup
0≤s≤1

Bs > δ
]

.

Now use the scale invariance property, that is Bλ
t = Bλ 2t/λ is a Brownian motion,

with λ = 1/δ to see that for any δ > 0,

P

[

sup
0≤s≤1

Bs > δ
]

= P

[

sup
0≤s≤1/δ 2

Bδ
s > 1

]

= P

[

sup
0≤s≤1/δ 2

Bs > 1
]

. (13)

If we let δ ↓ 0, we find

P[sup
s≥0

Bs > 1] = lim
δ↓0

↑P[ sup
0≤s≤1/δ 2

Bs > 1] = 1

(since limδ↓0
↑P[sup0≤Bs≤1 Bs > δ ] = 1).

Another scaling argument shows that, for every M > 0,

P[sup
s≥0

Bs > M] = 1

and replacing B with −B,

P[inf
s≥0

Bs <−M] = 1.

Continuity of sample paths completes the proof of (ii).

Corollary 4.20. The map t 7→ Bt is a.s. not monotone on any non-trivial interval.

5 Filtrations and stopping times

These are concepts that you already know about in the context of discrete param-

eter martingales. Our definitions here mirror what you already know, but in the

continuous setting one has to be slightly more careful. In the end, we’ll make

enough assumptions to guarantee that everything goes through nicely.
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Definition 5.1. A collection {Ft , t ∈ [0,∞)} of σ -algebras of sets in F is a filtra-

tion if Ft ⊆ Ft+s for t,s ∈ [0,∞). (Intuitively, Ft corresponds to the information

known to an observer at time t.)

In particular, for a process X we define F X
t = σ({X(s) : s ≤ t}) (that is F X

t

is the information obtained by observing X up to time t) to be the natural filtration

associated with the process X.

We say that {Ft}t≥0 is right continuous if for each t ≥ 0,

Ft = Ft+ ≡ ∩ε>0Ft+ε .

We say that {Ft}t≥0 is complete if (Ω,F ,P) is complete (contains all subsets

of the P-null sets) and {A ∈ F : P[A] = 0} ⊂ F0 (and hence ⊂ Ft for all t).

Definition 5.2. A filtration {Ft}t≥0 (or the filtered space (Ω,F ,{Ft}t≥0,P)) is

said to satisfy the usual conditions if it is right-continuous and complete.

Given a filtered probability space, we can always consider a natural augmen-

tation, replacing the filtration with σ(Ft+,N ), where N = N (P) := {A ∈ Ω :

∃B∈F such that A⊆B and P[B] = 0}. The augmented filtration satisfies the usual

conditions. In Section 7.3 we’ll see that if we have a martingale with respect to a

filtration that satisfies the usual conditions, then it has a right continuous version.

As in discrete time, represent ‘knowing Xt at time t’ by adaptedness:

Definition 5.3. A process X is adapted to a filtration {Ft}t≥0 if X(t) is Ft-measurable

for each t ≥ 0 (if and only if F X
t ⊆ Ft for all t).

Adaptedness tells us about measurability in ω at each time t, but nothing about

regularity in time. Measurability of a process (Definition 3.3) tells us about regu-

larity in time and space, but not about adaptedness. Putting these together we get

the following:

Definition 5.4. A process X is {Ft}t≥0-progressive (or progressively measur-

able) if for each t ≥ 0, the mapping (s,ω) 7→ Xs(ω) is measurable on ([0, t]×
Ω,B([0, t])⊗Ft).

If X is {Ft}t≥0-progressive, then it is {Ft}t≥0-adapted, but the converse is not

necessarily true. One can show, with difficulty, that any adapted and measurable

process has a progressive modification. However, every right continuous {Ft}t≥0-

adapted process is {Ft}t≥0-progressive and since we are interested in continuous

processes, we won’t need to dwell on these details.

Proposition 5.5. An adapted process (Xt) whose paths are all right-continuous (or

are all left-continuous) is progressively measurable.

Proof. We present the argument for a right-continuous X . For t > 0, n ≥ 1, k =

0,1,2 . . . ,2n −1 let X
(n)
0 (ω) = X0(ω) and X

(n)
s (ω) := X k+1

2n t(ω) for kt
2n < s ≤ k+1

2n t.

Clearly (X
(n)
s : s≤ t) takes finitely many values and is B([0, t])⊗Ft–measurable.

Further, by right continuity, Xs(ω)= limn→∞ X
(n)
s (ω), and hence is also measurable

(as a limit of measurable mappings).
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Usually we shall consider the natural filtration associated with a process and

don’t specify it explicitly. On the other hand, sometimes we suppose that we are

given a filtration Ft In this case,

Definition 5.6. A process B is an {Ft}t≥0-Brownian motion if it is adapted to

{Ft}t≥0, B0 = 0, B has continuous paths, Bt −Bs ∼N(0, t−s) for t > s and Bt −Bs

is independent of Fs for all t > s.

Equivalently, B is adapted, a Brownian motion in its own filtration, and Bt −Bs

is independent of Fs for all t > s.

Example 5.7. Let B be a Brownian motion (in its natural filtration), and let Ft =
σ(Bs;s ≤ t)∨σ(BT ) for some T > 0. Then B is not an {Ft}t≥0-Brownian motion.

5.1 Stopping times

Again the definition mirrors what you know from the discrete setting.

Definition 5.8. Let (Ω,F ,{Ft}t≥0,P) be a filtered space. A random variable

τ : Ω 7→ [0,+∞] is called a stopping time (relative to {Ft}t≥0) if {τ ≤ t} ∈ Ft ,

∀t ≥ 0.

Stopping times are sometimes called optional times (or example, in the ‘op-

tional stopping theorem’).

The ‘first time a certain phenomenon occurs’ will be a stopping time. Our

fundamental examples will be first hitting times of sets. If X is a stochastic process

and Γ ∈ B(R) we set

HΓ(ω) = HΓ(X(ω)) := inf{t ≥ 0 : X(ω) ∈ Γ}. (14)

Exercise 5.9. Show that

i. if X is adapted to {Ft}t≥0 and has right-continuous paths then HΓ, for Γ an

open set, is a stopping time relative to (Ft+).

ii. if X has continuous paths, then HΓ, for Γ a closed set, is a stopping time

relative to {Ft}t≥0.

One can show that the hitting time of any Borel set, or of a (reasonably nice)

set which changes in time, is a stopping time (assuming {Ft}t≥0 satisfies the usual

conditions), but this is surprisingly difficult!

With a stopping time we can associate ‘the information known at time τ’:

Definition 5.10. Given a stopping time τ relative to {Ft}t≥0 we define

Fτ := {A ∈ F : A∩{τ ≤ t} ∈ Ft ∀t ≥ 0},
Fτ+ := {A ∈ F : A∩{τ < t} ∈ Ft},
Fτ− := σ({A∩{τ > t} : t ≥ 0, A ∈ Ft})

(which satisfy all the natural properties).
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Proposition 5.11. Let τ be a stopping time. Then

(i) Fτ−,Fτ ,Fτ+ are all σ -algebras and τ is Fτ−-measurable.

(ii) Fτ−⊆Fτ ⊆Fτ+=
⋂

ε>0 Fτ+ε and Fτ =Fτ+ if {Ft}t≥0 is right-continuous.

(iii) If τ = t then Fτ = Ft , Fτ+ = Ft+

(iv) If τ and ρ are stopping times then so are τ ∧ ρ , τ ∨ ρ and τ + ρ and {τ ≤
ρ} ∈ Fτ∧ρ . Further if τ ≤ ρ then Fτ ⊆ Fρ .

(v) If τ is a stopping time and ρ is a [0,∞]-valued random variable which is

Fτ -measurable and ρ ≥ τ , then ρ is a stopping time. In particular,

τn :=
∞

∑
k=0

k+1

2n
1{ k

2n <τ≤ k+1
2n }+∞1{τ=∞} (15)

is a sequence of stopping times with τn ↓ τ as n → ∞.

Proof. We prove (v):

Note that {ρ ≤ t}= {ρ ≤ t}∩{τ ≤ t} ∈ Ft since ρ is Fτ -measurable. Hence

ρ is a stopping time. We have τn ↓ τ by definition, and clearly τn is Fτ -measurable

since τ is Fτ -measurable.

It is often useful to be able to ‘stop’ a process at a stopping time and know

that the result still has nice measurability properties. If (Xt)t≥0 is progressively

measurable and τ is a stopping time, then Xτ := (Xt∧τ : t ≥ 0) is progressively

measurable.

Theorem 5.12. Let X be a progressively measurable process and τ a stopping

time. Then Xτ1τ<∞ is Fτ -measurable. The stopped process Xτ = (Xτ∧t : t ≥ 0) is

progressively measurable (where Xτ1τ<∞(ω) = Xτ(ω)(ω)1τ(ω)<∞).

Proof. The first statement is ‘easy’ once we prove Xτ is progressive. Observe Xτ∧s

on [0, t]×Ω is a composition of two maps

(s,ω) 7→(τ(ω)∧ s,ω),

([0, t]×Ω,B([0, t])⊗Ft) 7→([0, t]×Ω,B([0, t])⊗Ft)

and

(u,ω) 7→Xu(ω),

([0, t]×Ω,B([0, t])⊗Ft) 7→(R,B(R)),

both of which are measurable since τ is a stopping time and X is progressively

measurable.
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6 Strong Markov property and reflection principle

We’re going to use the sequence τn of stopping times in (15) to prove an impor-

tant generalisation of the Markov property for Brownian motion called the strong

Markov property. Recall that the Markov property says that Brownian motion has

‘no memory’ – we can start it again from Bs and Bt+s − Bs is just a Brownian

motion, independent of the path followed by B up to time s. The strong Markov

property says that the same is true if we replace s by a stopping time.

Theorem 6.1. Let B = (Bt : t ≥ 0) be a standard Brownian motion on the filtered

probability space (Ω,F ,{Ft}t≥0,P) and let τ be a stopping time with respect to

{Ft}t≥0. Then, conditional on {τ < ∞}, the process

B
(τ)
t := Bτ+t −Bτ (16)

is a standard Brownian motion independent of Fτ . This is called the strong Markov

property of Brownian motion.

Proof. Assume that τ < ∞ a.s..

We will show that ∀ A ∈ Fτ , 0 ≤ t1 < .. . < tp and continuous and bounded

functions F on Rn we have

E
[
1AF(B

(τ)
t1

, . . . ,B
(τ)
tp

)
]
= P(A)E

[
F(Bt1 , . . . ,Btp

)
]
. (17)

Granted (17), taking A = Ω, we find that B and B(τ) have the same finite dimen-

sional distributions, and since B(τ) has continuous paths, it must be a Brownian

motion. On the other hand (as usual using a monotone class argument), (17) says

that (B
(τ)
t1

, . . . ,B
(τ)
tp

) is independent of Fτ , and so B(τ) is independent of Fτ .

To establish (17), first observe that by continuity of B and F ,

F(B
(τ)
t1

, . . . ,B
(τ)
tp

) = lim
n→∞

∞

∑
k=0

1 k−1
2n <τ≤ k

2n
F
(
B k

2n +t1
−B k

2n
, . . . ,B k

2n +tp
−B k

2n

)
a.s.,

and by the Dominated Convergence Theorem

E
[
1AF(B

(τ)
t1

, . . . ,B
(τ)
tp

)
]
= lim

n→∞

∞

∑
k=0

E

[

1A1 k−1
2n <τ≤ k

2n
F
(
B k

2n +t1
−B k

2n
, . . . ,B k

2n +tp
−B k

2n

)]

.

For A ∈ Fτ , the event A∩ { k−1
2n < τ ≤ k

2n } ∈ F k
2n

, so using the simple Markov

property at k/2n,

E

[

1A∩{ k−1
2n <τ≤ k

2n }F
(
B k

2n +t1
−B k

2n
, . . . ,B k

2n +tp
−B k

2n

)]

= P

[

A∩
{

k−1

2n
< τ ≤ k

2n

}]

E
[
F(Bt1 , . . . ,Btp

)
]
.

Sum over k to recover the desired result.
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If P(τ = ∞)> 0, the same argument gives instead

E

[

1A∩{τ<∞}F(B
(τ)
t1

, . . . ,B
(τ)
tp

)
]

= P[A∩{τ < ∞}]E
[
F(Bt1 , . . . ,Btp

)
]
.

It was not until the 1940’s that Doob properly formulated the strong Markov

property and it was 1956 before Hunt proved it for Brownian motion.

The following result, known as the reflection principle, was known at the end

of the 19th Century for random walk and appears in the famous 1900 thesis of

Bachelier, which introduced the idea of modelling stock prices using Brownian

motion (although since he had no formulation of the strong Markov property, his

proof is not rigorous).

Theorem 6.2 (The reflection principle). Let St := supu≤t Bu. For a ≥ 0 and b ≤ a

we have

P[St ≥ a, Bt ≤ b] = P[Bt ≥ 2a−b] ∀t ≥ 0.

In particular St and |Bt | have the same distribution.

Proof. We apply the strong Markov property to the stopping time Ta = inf{t > 0 :

Bt = a}. We have already seen that Ta < ∞ a.s. and so in the notation of Theo-

rem 6.1,

P[St ≥ a, Bt ≤ b] = P[Ta ≤ t, Bt ≤ b] = P[Ta ≤ t, B
(Ta)
t−Ta

≤ b−a] (18)

(since B
(Ta)
t−Ta

= Bt −BTa
= Bt −a).

Now B(Ta) is a Brownian motion, independent of FTa
and hence of Ta. Since

B(Ta) has the same distribution as −B(Ta), (Ta,B
(Ta)) has the same distribution as

(Ta,−B(Ta)).
So

P[Ta ≤ t,B(Ta) ≤ b−a] = P[Ta ≤ t,−B
(Ta)
t−Ta

≤ b−a]

= P[Ta ≤ t,Bt ≥ 2a−b] = P[Bt ≥ 2a−b],

since 2a−b ≥ a and so {Bt ≥ 2a−b} ⊆ {Ta ≤ t}.

We have proved that P[St ≥ a,Bt ≤ b] = P[Bt ≥ 2a−b]. For the last assertion

of the theorem, taking a = b in (18), observe that

P[St ≥ a] = P[St ≥ a,Bt ≥ a]+P[St ≥ a,Bt ≤ a]

= 2P[Bt ≥ a] = P[Bt ≥ a]+P[Bt ≤−a] (symmetry)

= P[|Bt | ≥ a].
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7 (Sub/super-)Martingales in continuous time

The results in this section will to a large extent mirror what you proved last term for

discrete parameter martingales (and we use those results repeatedly in our proofs).

We assume throughout that a filtered probability space (Ω,F ,{Ft}t≥0,P) is given.

7.1 Definitions

Definition 7.1. An adapted stochastic process (Xt)t≥0 such that Xt ∈ L1(P) (i.e.

E[|Xt |]< ∞) for any t ≥ 0, is called

i. a martingale if E[Xt |Fs] = Xs for all 0 ≤ s ≤ t,

ii. a super-martingale if E[Xt |Fs]≤ Xs for all 0 ≤ s ≤ t,

iii. a sub-martingale if E[Xt |Fs]≥ Xs for all 0 ≤ s ≤ t.

Exercises: Suppose (Zt : t ≥ 0) is an adapted process with independent incre-

ments, i.e. for all 0 ≤ s < t, Zt −Zs is independent of Fs. The following give us

examples of martingales:

i. if ∀ t ≥ 0, Zt ∈ L1, then Z̃t := Zt −E[Zt ] is a martingale,

ii. if ∀ t ≥ 0, Zt ∈ L2, then Z̃2
t −E[Z̃2

t ] is a martingale,

iii. if for some θ ∈ R, and ∀ t ≥ 0, E[eθZt ]< ∞, then eθZt

E[eθZt ]
is a martingale.

In particular, Bt , B2
t − t and eθBt−θ 2t/2 are all martingales with respect to a filtration

{Ft}t≥0 for which (Bt)t≥0 is a Brownian motion.

Warning: It is important to remember that a process is a martingale with respect

to a filtration – giving yourself more information (enlarging the filtration) may

destroy the martingale property. For us, even when we don’t explicitly mention it,

there is a filtration implicitly assumed (usually the natural filtration associated with

the process, augmented to satisfy the usual conditions).

Given a martingale (or submartingale) it is easy to generate many more.

Proposition 7.2. Let (Xt)t≥0 be a martingale (respectively sub-martingale) and ϕ :

R→ R be a convex (respectively convex and increasing) such that E[|ϕ(Xt)|]< ∞

for any t ≥ 0. Then (ϕ(Xt))t≥0 is a sub-martingale.

Proof. Apply the conditional Jensen inequality (see appendix, Lemma A.21).

In particular, if (Xt)t≥0 is martingale with E[|Xt |p] < ∞, for some p ≥ 1 and

all t ≥ 0, then |Xt |p is a sub-martingale (and consequently, t 7→ E[|Xt |p] is non-

decreasing).
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7.2 Doob’s maximal inequalities

Doob was the person who placed martingales on a firm mathematical foundation

(beginning in the 1940’s). He initially called them ‘processes with the property E’,

but reverted to the term martingale in his monumental book.

Doob’s inequalities are fundamental to proving convergence theorems for mar-

tingales. You already encountered them in the discrete setting and we shall recall

those results that underpin our proofs in the continuous world here. They allow us

to control the running maximum of a martingale.

Theorem 7.3. If (Xn)n≥0 is a discrete martingale (or a nonnegative submartingale)

w.r.t. some filtration (Fn), then for any N ∈ N, p ≥ 1 and λ > 0,

λ pP

[

sup
n≤N

|Xn| ≥ λ
]

≤ E
[
|XN |p

]

and for any p > 1

E
[
|XN |p

]
≤ E

[

sup
n≤N

|Xn|p
]

≤
( p

p−1

)p

E
[
|XN |p

]
.

We’d now like to extend this to continuous time.

Suppose that X is indexed by t ∈ [0,∞). Take a countable dense set D in [0,T ],
e.g. D = Q∩ [0,T ], and an increasing sequence of finite subsets Dn ⊆ D such that

∪∞
n=1Dn = D.

The above inequalities hold for X indexed by t ∈ Dn ∪{T}. Monotone con-

vergence then yields the result for t ∈ D. If X has regular sample paths (e.g. right

continuous) then the supremum over a countable dense set in [0,T ] is the same as

over the whole of [0,T ] and so:

Theorem 7.4 (Doob’s maximal and Lp inequalities).

If (Xt)t≥0 is a right continuous martingale or nonnegative sub-martingale, then for

any T ≥ 0, λ > 0,

P

[

sup
t≤T

|Xt | ≥ λ
]

≤ 1

λ p
E
[
|XT |p

]
, p ≥ 1

E

[

sup
t≤T

|Xt |p
]

≤
( p

p−1

)p

E
[
|XT |p

]
, p > 1.

(19)

As an application of Doob’s maximal inequality, we derive a useful bound for

Brownian motion.

Proposition 7.5. Let (Bt)t≥0 be Brownian motion and St = supu≤t Bu. For any

λ > 0 we have

P[St ≥ λ t]≤ e−
λ2t

2 .
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Proof. Recall that eαBt−α2t/2, t ≥ 0, is a non-negative martingale. It follows that,

for α ≥ 0,

P[St ≥ λ t] ≤ P

[

sup
u≤t

(
eαBu−α2t/2

)
≥ eαλ t−α2t/2

]

≤ P

[

sup
u≤t

(
eαBu−α2u/2

)
≥ eαλ t−α2t/2

]

≤ e−αλ t+α2t/2E

[

eαBt−α2t/2
]

︸ ︷︷ ︸

=1

.

The bound now follows since minα≥0 e−αλ t+α2t/2 = e−λ 2t/2 (with the minimum

achieved when α = λ ).

In the next subsection, we are going to show that even if a supermartingale is

not right continuous, it has a right continuous version (this is Doob’s Regularisation

Theorem). To prove this, we need a slight variant of the maximal inequality – this

time for a supermartingale – which in turn relies on Doob’s Optional Stopping (or

Sampling) Theorem for discrete supermartingales.

Theorem 7.6 (Doob’s Optional Stopping Theorem for discrete supermartinagles).

(bounded case)

If (Yn)n≥1 is a supermartingale, then for any choice of bounded stopping times

S and T such that S ≤ T , we have

YS ≥ E[YT |FS].

Here’s the version of the maximal inequality that we shall need.

Proposition 7.7. Let (Xt : t ≥ 0) be a supermartingale. Then

P

[

sup
t∈[0,T ]∩Q

|Xt | ≥ λ

]

≤ 1

λ
(2E[|XT |]+E[|X0|]) , ∀λ ,T > 0. (20)

In particular, supt∈[0,T ]∩Q |Xt |< ∞ a.s.

Proof. Take a sequence of rational numbers 0 = t0 < t1 < .. . < tn = T . Applying

Theorem 7.6 with S = min{ti : Xti ≥ λ}∧T , we obtain

E[X0]≥ E[XS]≥ λP[ sup
1≤i≤n

Xti ≥ λ ]+E[XT 1sup1≤i≤n Xti
<λ ].

Rearranging,

λP( sup
1≤i≤n

Xti ≥ λ )≤ E[X0]+E[X−
T ]

(where X−
T = −min(XT ,0)). Now X−

T is a non-negative submartingale and so we

can apply Doob’s inequality directly to it, from which

λP( sup
1≤i≤n

X−
ti
≥ λ )≤ E[X−

T ],

and, since E[X−
T ] ≤ E[|XT |], taking the (monotone) limit in nested sequences in

[0,T ]∩Q, gives the result.
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7.3 Convergence and regularisation theorems

As advertised, our aim in this section is to prove that, provided the filtration satisfies

‘the usual conditions’, any martingale has a version with right continuous paths.

First we recall the notion of upcrossing numbers.

Definition 7.8. Let f : I →R be a function defined on a subset I of [0,∞). If a < b,

the upcrossing number of f along [a,b], which we shall denote U([a,b],( ft)t∈I) is

the maximal integer k ≥ 1 such that there exists a sequence s1 < t1 < · · ·< sk < tk
of elements of I such that f (si)< a and f (ti)> b for every i = 1, . . . ,k.

If even for k = 1 there is no such sequence, we take U([a,b],( ft)t∈I) = 0. If

such a sequence exists for every k ≥ 1, we set U([a,b],( ft)t∈I) = ∞.

Upcrossings of [a,b),(a,b],(a,b) are defined similarly, with the inequalities

weakened.

Upcrossing numbers are a convenient tool for studying the regularity of func-

tions. We omit the proof of the following analytic lemma.

Lemma 7.9. Let D be a countable dense set in [0,∞) and let f be a real function

defined on D. Assume that for every T ∈ D

i. f is bounded on D∩ [0,T ];

ii. for all rationals a and b such that a < b

U([a,b],( ft)t∈D∩[0,T ])< ∞.

Then the right limit

f (t+) = lim
s↓t,s∈D

f (s)

exists for every real t ≥ 0, and similarly the left limit

f (t−) = lim
s↑t,s∈D

f (s)

exists for any real t > 0.

Furthermore, the function g : R+ →R defined by g(t) = f (t+) is càdlàg (‘con-

tinue à droite avec des limites à gauche’; i.e. right continuous with left limits) at

every t > 0.

Lemma 7.10 (Doob’s upcrossing lemma in discrete time). Let (Xt)t≥0 be a super-

martingale and F a finite subset of [0,T ]. If a < b then

E

[

U
(
[a,b],(Xn : n ∈ F)

)]

≤ sup
n∈F

E
[
(Xn −a)−

]

b−a
≤ E

[
(XT −a)−

]

b−a
.
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The last inequality follows since (Xt − a)− is a submartingale. By monotone

convergence

lim
k→∞

E
[
U
(
[a,b−1/k],(Xn : n ∈ F)

)]
= E

[
U
(
[a,b),(Xn : n ∈ F)

)]

satisfies the same bound (and similarly for other intervals)

Taking an increasing sequence Fn and setting ∪nFn = F , this immediately ex-

tends to a countable F ⊂ [0,T ]. From this we deduce:

Theorem 7.11. If (Xt) is a right-continuous super-martingale and supt E[X
−
t ]< ∞

then X∞ = limt→∞ Xt exists (convergence a.s.) and X∞ is in L1. In particular, a

non-negative right-continuous supermartingale converges a.s. as t → ∞.

Proof. By right continuity, upcrossings of [a,b) over t ∈ [0,∞) are the same as

upcrossings of [a,b) over t ∈ [0,∞)∩Q and a bounded sequence (xn)n≥1 converges

(possibly to −∞) if and only if U([a,b),(xn)n≥1) < ∞ for all a < b with a,b ∈ Q.

As X is a supermartingale

E[|Xt |] = E[Xt ]+2E[X−
t ]≤ E[X0]+2E[X−

t ]

so by Fatou’s inequality

E[|X∞|] = E[lim
t
|Xt |]≤ lim

t
E[|Xt |]< ∞,

that is, X∞ ∈ L1.

Remark 7.12. Note the convergence here is almost sure, not in L1 (that is, we

usually don’t have E[|Xt −X∞|]→ 0)!

Example 7.13. By direct calculation, we know Xt = exp(θBt − θ 2t/2) defines a

martingale, and clearly X ≥ 0, so Xt converges almost surely as t → ∞. Restricting

to t ∈ N, from the strong law of large numbers, we know that

Bt

t
=

1

t

t

∑
s=1

(Bs −Bs−1)→ 0

and hence as t → ∞

θBt −
θ 2t

2
= t
(

θ
Bt

t
− θ 2

2

)

→−∞.

It follows that Xt → X∞ = 0 a.s., but

E[|Xt −X∞|] = E[Xt ] = 1 6→ 0 and Xt 6= E[X∞|Ft ].

The next result says that we can talk about left and right limits for a general

supermartingale and then our analytic lemma will tell us how to find a càdlàg ver-

sion.
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Theorem 7.14. If (Xt : t ≥ 0) is a supermartingale then for P-almost every ω ∈ Ω,

∀t ∈ (0,∞) lim
r↑t,r∈Q

Xr(ω) and lim
r↓t,r∈Q

Xr(ω) exist and are finite. (21)

Proof. Fix T > 0. From Lemmas 7.7 and 7.10, there exists ΩT ⊆ Ω, with P(ΩT ) =
1, such that for any ω ∈ ΩT

∀a,b ∈Q with a < b, U
(
[a,b],(Xt(ω) : t ∈ [0,T ]∩Q)

)
< ∞,

and

sup
t∈[0,T ]∩Q

|Xt(ω)|< ∞.

It follows that the limits in (21) are well defined and finite for all t ≤ T and ω ∈ΩT .

To complete the proof, take Ω := Ω1 ∩Ω2 ∩Ω3 ∩ . . ..

Using this, even if X is not right-continuous, its right-continuous version is a.s.

well defined. The following fundamental regularisation result is again due to Doob.

We begin by recalling Vitali’s convergence theorem:

Theorem 7.15 (Vitali convergence theorem). Let {Yk} be family of random vari-

ables, and suppose Yk →Y∞ in probability (or a.s.). Then Yk →Y∞ in L1 if and only

if {Yk} is a uniformly integrable family.

Proof. See appendix (Theorem A.17)

Theorem 7.16. Let X be a supermartingale with respect to a right-continuous

and complete filtration {Ft}t≥0. If t 7→ E[Xt ] is right continuous (e.g. if X is

a martingale) then X admits a modification with càdlàg paths, which is also an

{Ft}t≥0-supermartingale.

Corollary 7.17. If X is a martingale then its càdlàg modification is also a martin-

gale.

Proof. By Theorem 7.14, there exists Ω0 ⊆ Ω, with P[Ω0] = 1, such that the pro-

cess

Xt+(ω) =

{

limr↓t,r∈Q Xr(ω) ω ∈ Ω0

0 ω /∈ Ω0

is well defined and adapted to {Ft}t≥0. By Lemma 7.9, it has càdlàg paths.

To check that we really have only produced a modification of Xt , that is Xt =
Xt+ almost surely, let tn ↓ t be a sequence of rationals. Then {Xtk} is uniformly

integrable (see appendix3, Lemma A.18) and converges a.s. to Xt+. By Vitali’s

convergence theorem, Xtk → Xt+ in L1, so we can pass to the limit n → ∞ in the

inequality Xt ≥ E[Xtn |Ft ] to obtain Xt ≥ E[Xt+|Ft ].

3An alternative is to show that {Xtk} is a backwards supermartingale and then use the backwards

supermartingale convergence theorem, which effectively amounts to proving uniform integrability
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Right continuity of t 7→ E[Xt ] implies E[Xt+−Xt ] = 0, so that Xt = Xt+ almost

surely.

Now, to check the supermartingale property, let s < t and let (sn)n≥0 be a se-

quence of rationals decreasing to s. Assume that sn < t for all n. Then, as above,

Xsn
→ Xs+ ∈ L1, so if A∈Fs+, which implies A∈Fsn

for every n, with tn as above,

E[Xs+1A] = lim
n→∞

E[Xsn
1A]≥ lim

n→∞
E[Xtn1A]

= E[Xt+1A] = E
[
E[Xt+ |Fs+]1A

]
.

Since this holds for all A ∈ Fs+ and since Xs+ and E[Xt+|Fs+] are both Fs+-

measurable, this shows

Xs+ ≥ E[Xt+|Fs+].

For martingales all the inequalities can be replaced by equalities and for submartin-

gales we use that −X is a supermartingale.

Given this result, we will now often assume that our (sub/super)-martingales

are càdlàg.

Remark 7.18. Let’s make some comments on the assumptions of the theorem.

i. The assumption that the filtration is right continuous is necessary. For ex-

ample, let Ω = {−1,+1} and P[{1}] = P[{−1}] = 1/2. We set

Xt(ω) =

{

0, 0 ≤ t ≤ 1,

ω , t > 1.

Then X is a martingale with respect to the canonical filtration (which is

complete since there are no nonempty negligible sets), but no modification

of X can be right continuous at t = 1.

ii. Similarly, take Xt = f (t), where f (t) is deterministic, non-increasing and not

right continuous. Then no modification can have right continuous sample

paths.

7.4 Martingale convergence and optional stopping

In Theorem 7.11 we showed that:

Theorem. Let X be a supermartingale with right continuous sample paths. As-

sume that (Xt)t≥0 is bounded in L1, i.e. supt E[|Xt |]<∞ (or more generally supt E[X
−
t ]<

∞). Then there exists X∞ ∈ L1 such that limt→∞ Xt = X∞ almost surely.

Under the assumptions of this theorem, Xt may not converge to X∞ in L1.

The next result gives, for martingales, necessary and sufficient conditions for L1-

convergence.
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Definition 7.19. A martingale is said to be closed if there exists a random variable

Z ∈ L1 such that for every t ≥ 0, Xt = E[Z|Ft ].

Theorem 7.20 (Martingale Convergence Theorem). Let (Xt : t ≥ 0) be a martin-

gale with right continuous sample paths. Then TFAE:

i. X is closed;

ii. the collection (Xt)t≥0 is uniformly integrable;

iii. Xt converges almost surely and in L1 as t → ∞.

Moreover, if these properties hold, Xt = E[X∞|Ft ] for every t ≥ 0, where X∞ ∈ L1

is the almost sure limit of Xt as t → ∞.

Proof. That the first condition implies the second is easy. If Z ∈ L1, then E[Z|G ],
where G varies over sub σ -fields of F is uniformly integrable.

As ii implies Theorem 7.11, under both ii and iii we have almost sure conver-

gence. Vitali’s theorem then states that ii and iii are equivalent.

Finally, if the third condition holds, for every s≥ 0, pass to the limit as t →∞ in

the equality Xs =E[Xt |Fs] (using the fact that conditional expectation is continuous

for the L1-norm, see appendix, Lemma A.22) and obtain Xs = E[X∞|Fs].

We would now like to establish conditions under which we have an optional

stopping theorem for continuous martingales. As usual, our starting point will be

the corresponding discrete time result and we shall pass to a suitable limit.

Theorem 7.21 (Optional stopping for uniformly integrable discrete time martin-

gales). Let (Yn)n∈N be a uniformly integrable martingale with respect to the filtra-

tion (Gn)n∈N, and let Y∞ be the a.s. limit of Yn when n → ∞. Then, for every choice

of the stopping times S and T such that S ≤ T , we have YT ∈ L1 and

YS = E[YT |GS],

where

GS = {A ∈ G∞ : A∩{S = n} ∈ Gn for every n ∈ N},
with the convention that YT = Y∞ on the event {T = ∞}, and similarly for YS.

Let (Xt)t≥0 be a right continuous martingale or supermartingale such that Xt

converges almost surely as t → ∞ to a limit X∞. Then for every stopping time T ,

we define

XT (ω) = 1{T (ω)<∞}XT (ω)(ω)+1{T (ω)=∞}X∞(ω).

Theorem 7.22. Let (Xt)t≥0 be a uniformly integrable martingale with right con-

tinuous sample paths. Let S and T be two stopping times with S ≤ T . Then XS and

XT are in L1 and XS = E[XT |FS].
In particular, for every stopping time S we have XS = E[X∞|FS] and E[XS] =

E[X∞] = E[X0].
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Proof. For any integer n ≥ 0 set

Tn =
∞

∑
k=0

k+1

2n
1{k2−n<T≤(k+1)2−n}+∞1{T=∞},

Sn =
∞

∑
k=0

k+1

2n
1{k2−n<S≤(k+1)2−n}+∞1{S=∞}.

Then Tn and Sn are sequences of stopping times that decrease respectively to T and

S. Moreover, Sn ≤ Tn for every n ≥ 0.

For each fxed n, 2nSn and 2nTn are stopping times of the discrete filtration

Gn = Fk/2n and Y
(n)
k = Xk/2n is a discrete martingale with respect to this filtration.

From Theorem 7.21, Y
(n)
2nSn

and Y
(n)
2nTn

are in L1 and

XSn
= Y

(n)
2nSn

= E[Y
(n)
2nTn

|G2nSn
] = E[XTn

|FSn
].

Let A ∈ FS. Since FS ⊆ FSn
we have A ∈ FSn

and so E[1AXSn
] = E[1AXTn

]. By

right continuity, XS = limn→∞ XSn
and XT = limn→∞ XTn

. The limits also hold in

L1 (in fact, by Theorem 7.21, XSn
= E[X∞|FSn

] for every n and so (XSn
)n≥1 and

(XTn
)n≥1 are uniformly integrable). L1 convergence implies that the limits XS and

XT are in L1 and allows us to pass to a limit, E[1AXS] = E[1AXT ]. This holds for

all A ∈ FS and so since XS is FS-measurable we conclude that XS = E[XT |FS], as

required.

Corollary 7.23. In particular, for any martingale with right continuous paths and

two bounded stopping times, S ≤ T , we have XS, XT ∈ L1 and XS = E[XT |FS].

Proof. Let a be such that S ≤ T ≤ a. The martingale (Xt∧a)t≥0 is closed by Xa and

so we may apply our previous results.

Corollary 7.24. Suppose that (Xt)t≥0 is a martingale with right continuous paths

and T is a stopping time.

i. XT = (Xt∧T )t≥0 is a martingale;

ii. if, in addition, (Xt)t≥0 is uniformly integrable, then XT = (Xt∧T )t≥0 is uni-

formly integrable and for every t ≥ 0, Xt∧T = E[XT |Ft ].

Proof. We know XT
t = Xt∧T = X t

T , and that Xt is integrable. Hence, by the optional

stopping theorem applied to the stopped process X t , we see that XT
t is integrable

for every t. Furthermore, for any s < t, as T ∧ s and T ∧ t are bounded stopping

times, by the optional stopping theorem,

XT
s = XT∧s = E[XT∧t |FT∧s] = 1T<sXT +1T≥sE[XT∧t |FT∧s]

= 1T<sX
T
t +1T≥sE[X

T
t |Fs] = E[XT

t |Fs].

Therefore XT is a martingale.
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We can use this to characterize martingales:

Theorem 7.25. Suppose M is a right-continuous process adapted to a right-continuous

filtration {Ft}t∈[0,∞]. Then M is a uniformly integrable martingale if, and only if,

for every stopping time T we know E
[
|MT |

]
< ∞ and E[MT ] = E[M0].

Proof. By considering the process {Mt −M0}t≥0, we can assume without loss of

generality that E[MT ] = E[M0] = 0. If M is a u.i. martingale, then Mt = E[M∞|Ft ],
and the result follows by optional stopping and Jensen’s inequality.

Conversely, consider any time t ∈ [0,∞] and any A ∈ Ft . Define a random time

T by putting T (ω) = t if ω ∈ A and T (ω) = ∞ if ω /∈ A. Then T is a stopping time.

By hypothesis

E[MT ] = E[1AMt ]+E[1AcM∞] = 0 = E[M∞] = E[1AM∞]+E[1AcM∞].

Therefore

E[1AMt ] = E[1AM∞]

for all A ∈ Ft , so Mt = E[M∞|Ft ] almost surely. The martingale {E[M∞|Ft ]}t∈[0,∞]

has a càdlàg modification, and for this modification, Mt = E[M∞|Ft ].

Above all, optional stopping is a powerful tool for explicit calculations.

Example 7.26. Fix a > 0 and let Ta be the first hitting time of a by standard Brow-

nian motion. Then for each λ > 0,

E[e−λTa ] = e−a
√

2λ .

Recall that Nλ
t = exp(λBt − λ 2

2
t) is a martingale. So Nλ

t∧Ta
is still a martin-

gale and it is in the bounded interval [0,eλa] and hence is uniformly integrable, so

E[Nλ
Ta
] = E[Nλ

0 ]. That is,

eaλE[e−λ 2Ta/2] = E[Nλ
0 ] = 1.

Replace λ by
√

2λ and rearrange.

Warning: This argument fails if λ < 0 – the reason being that we lose the

uniform integrability.

8 Continuous semimartingales

Recall that our original goal was to make sense of differential equations driven

by ‘rough’ inputs. In fact, we’ll recast our differential equations as integral equa-

tions and so we must develop a theory that allows us to integrate with respect to

‘rough’ driving processes. The class of processes with which we work are called

semimartingales, and we shall specialise to the continuous ones.

We’re going to start with functions for which the integration theory that we

already know is adequate – these are called functions of finite variation.

Throughout, we assume that a filtered probability space (Ω,F ,{Ft}t≥0,P)
satisfying the usual conditions is given.
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8.1 Functions of finite variation

Throughout this section we only consider real-valued right-continuous functions

on [0,∞). Our arguments will be shift invariant so, without loss of generality, we

assume that any such function a satisfies a(0) = 0. Recall the following definition.

Definition 8.1. The (total) variation of a function a over [0,T ] is defined as

V (a)T = sup
π

nπ−1

∑
i=0

|ati+1
−ati |,

where the supremum is over partitions π = {0 = t0 < t1 < .. . < tnπ = T} of [0,T ].
We say that a is of finite variation on [0,T ] if V (a)T < ∞. The function a is of finite

variation if V (a)T <∞ for all T ≥ 0 and of bounded variation if limT→∞V (a)T <∞.

Remark 8.2. Note that t → V (a)t is non-negative, right-continuous and non-

decreasing in t. This follows since any partition of [0,s] may be included in a

partition of [0, t], t ≥ s.

Proposition 8.3. The function a is of finite variation if and only if it is equal to the

difference of two non-decreasing functions, a1 and a2.

Moreover, if a is of finite variation, then a1 and a2 can be chosen so that

V (a)t = a1(t)+a2(t). If a is càdlàg then V (a)t is also càdlàg.

Proof.

V (a)t −a(t) = sup
π

n(π)−1

∑
i=0

(
|a(ti+1)−a(ti)|−

(
a(ti+1)−a(ti)

))

is an non-decreasing function of t, as is V (a)t +a(t).

If we define measures µ+, µ− by

µ+((0, t]) =
V (a)t +a(t)

2
, µ−((0, t]) =

V (a)t −a(t)

2
,

then we can develop a theory of integration with respect to a by declaring that

∫ t

0
f (s)da(s) =

∫ t

0
f (s)µ+(ds)−

∫ t

0
f (s)µ−(ds),

provided that

∫ t

0
| f (s)||µ |(ds) =

∫ t

0
| f (s)|(µ+(ds)+µ−(ds))< ∞.

We say that µ = µ+− µ− is the signed measure associated with a, µ+, µ− is its

Jordan decomposition and
∫ t

0 f (s)da(s) is the Lebesgue-Stieltjes integral of f with

respect to a.
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We sometimes use the notation

( f ·a)(t) =
∫ t

0
f (s)da(s).

The function ( f · a) will be right continuous and of finite variation whenever a is

finite variation and f is a-integrable (exercise).

Example 8.4. For some λ ∈R, let a(t)= 1−e−λ t . Then µ([a,b))= e−λb−e−λa =
∫ b

a λe−λ tdt, and we find

( f ·a)(t) =
∫ t

0
f (s)λe−λ sds.

Similarly whenever a is any distribution function.

Remark 8.5. A function a∈C1 is of finite variation and
∫

f (s)da(s)=
∫

f (s)a′(s)ds.

It is worth recording that our integral can be obtained through the limiting

procedure that one might expect. Let f : [0,T ] → R be left-continuous and 0 =
tn
o < tn

1 < · · · < tn
pn
= T be a sequence of partitions of [0,T ] with mesh tending to

zero. Then
∫ T

0
f (s)da(s) = lim

n→∞

pn

∑
i=1

f (tn
i−1)
(
a(tn

i )−a(tn
i−1)
)
.

The proof is easy: let fn : [0,T ]→ R be defined by fn(s) = f (tn
i−1) if s ∈ (tn

i−1, t
n
i ],

1 ≤ i ≤ pn, and fn(0) = 0. Then

pn

∑
i=1

f (tn
i−1)
(
a(tn

i )−a(tn
i−1)
)
=
∫

[0,T ]
fn(s)µ(ds),

where µ is the signed measure associated with a. The desired result now follows

by the Dominated Convergence Theorem.

In the argument above, fn took the value of f at the left endpoint of each inter-

val. In the finite variation case, we could equally have approximated by fn taking

the value of f at the midpoint of the interval, or the right hand endpoint, or any

other point in between, but the limits could differ if a were not continuous.

Proposition 8.6 (Associativity). Let a be of finite variation as above and f ,g
measurable functions, f is a-integrable and g is ( f · a)-integrable. Then g f is

a-integrable and
∫ t

0
g(s)d( f ·a)(s) =

∫ t

0
g(s) f (s)da(s).

In our ‘dot’-notation:

g · ( f ·a) = (g f ) ·a. (22)
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Proposition 8.7 (Stopping). Let a be of finite variation as above and fix t ≥ 0. Set

at(s) = a(t ∧ s). Then at is of finite variation and for any measurable a-integrable

function f

∫ u∧t

0
f (s)da(s) =

∫ u

0
f (s)dat(s) =

∫ u

0
f (s)1[0,t](s)da(s), u ∈ [0,∞].

Proposition 8.8 (Integration by parts). Let a and b be two right-continuous func-

tions of finite variation with a(0) = b(0) = 0. Then for any t

a(t)b(t) =
∫ t

0
a(s−)db(s)+

∫ t

0
b(s−)da(s)+ ∑

s∈[0,t]
∆a(s)∆b(s)

where ∆a(t) = a(t)−a(t−) and a(t−) = lims↑t a(s).

Remark 8.9. As a and b are right-continuous they have at most countably many

discontinuities, and as they are of finite variation, the left-limits exist.

Sketch. For a partition πn, take a telescoping sum

a(t)b(t) = ∑
ti∈πn

(a(ti)b(ti)−a(ti−1)b(ti−1))

= ∑
ti∈πn

a(ti−1)
(
b(ti)−b(ti−1)

)
+ ∑

ti∈πn

b(ti−1)
(
a(ti)−a(ti−1)

)

+ ∑
ti∈πn

(
a(ti)−a(ti−1)

)(
b(ti)−b(ti−1)

)
.

By dominated convergence, these converge to the stated integrals.

Proposition 8.10 (Chain-rule). If F is a C1 function and a is continuous of finite

variation, then F(a(t)) is also of finite variation and

F(a(t)) = F(a(0))+
∫ t

0
F ′(a(s))da(s).

Proof. The statement is trivially true for F(x) = x. Now by Proposition 8.8, it is

straightforward to check that if the statement is true for F , then it is also true for

xF(x). Hence, by induction, the statement holds for all polynomials. To complete

the proof, approximate F ∈C1 by a sequence of polynomials.

Proposition 8.11 (Change of variables). If a is non-decreasing and right-continuous

then so is its ‘right inverse’

c(s) := inf{t ≥ 0 : a(t)> s},

where inf /0 = +∞. Let a(0) = 0. Then, for any Borel measurable function f ≥ 0

on R+, we have
∫ ∞

0
f (u)da(u) =

∫ a(∞)

0
f (c(s))ds.

41



Proof. If f (u) = 1[0,ν ](u), then the claim becomes

a(ν) =
∫ ∞

0
1{c(s)≤ν}ds = inf{s : c(s)> ν},

and equality holds by definition of c. Take differences to get indicators of sets

(u,ν ]. The Monotone Class Theorem allows us to extend to functions of compact

support and then take increasing limits to obtain the formula in general.

8.2 Processes of finite variation

Recall that a filtered probability space (Ω,F ,{Ft}t≥0,P) satisfying the usual con-

ditions is given.

Definition 8.12. An adapted right-continuous process A = (At : t ≥ 0) is called a

finite variation process (or a process of finite variation) if A0 = 0 and t 7→ At is (a

function) of finite variation a.s..

Proposition 8.13. Let A be a finite variation process and K a progressively mea-

surable process s.t.

∀t ≥ 0, ∀ω ∈ Ω,
∫ t

0
|Ks(ω)||dAs(ω)|< ∞.

Then ((K ·A)t : t ≥ 0), defined as (K ·A)t(ω) :=
∫ t

0 Ks(ω)dAs(ω), is a finite varia-

tion process.

Proof. The right continuity is immediate from the deterministic theory, but we

need to check that (K ·A)t is adapted (and hence progressive, by Proposition 5.5).

For this we check that if t > 0 is fixed and h : [0, t]×Ω → R is measurable with

respect to B([0, t])⊗Ft , and if

∫ t

0
|h(s,ω)||dAs(ω)|< ∞

for every ω ∈ Ω, then
∫ t

0
h(s,ω)dAs(ω)

is Ft-measurable.

Fix t > 0. Consider first h defined by h(s,ω) = 1(u,v](s)1Γ(ω) for (u,v]⊆ [0, t]
and Γ ∈ Ft . Then

(h ·A)t = 1Γ(Av −Au)

is Ft-measurable. By the Monotone Class Theorem, (h ·A)t is Ft-measurable for

any h = 1G with G ∈ B([0, t])⊗Ft , or, more generally, any bounded B([0, t])⊗
Ft-measurable function h. If h is a general B([0, t])⊗Ft-measurable function

satisfying
∫ t

0
|h(s,ω)||dAs(ω)|< ∞ ∀ω ∈ Ω,
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then h is a pointwise limit, h = limn→∞ hn, of simple functions with |h| ≥ |hn|. The

integrals
∫

hn(s,ω)dAs(ω) converge by the Dominated Convergence Theorem, and

hence
∫ t

0 h(s,ω)dAs(ω) is also Ft-measurable (as a limit of Ft-measurable func-

tions). In particular, (K ·A)t(ω) is Ft-measurable since by progressive measura-

bility, (s,ω) 7→ Ks(ω) on [0, t] is B([0, t])⊗Ft-measurable.

8.3 Continuous local martingales

We now want to extend our integration theory to processes which are not of finite

variation. The processes that make our theory work are slight generalisations of

martingales.

Definition 8.14. An adapted process (Mt : t ≥ 0) is called a continuous local

martingale if M0 = 0, it has continuous trajectories a.s. and if there exists a non-

decreasing sequence of stopping times (τn)n≥1 such that τn ↑ ∞ a.s. and for each

n, Mτn = (Mt∧τn
: t ≥ 0) is a (wlog uniformly integrable) martingale. We say (τn)

reduces or localizes M.

More generally, when we do not assume that M0 = 0, we say that M is a con-

tinuous local martingale if Nt = Mt −M0 is a continuous local martingale.

Any martingale is a local martingale, but the converse is false.

Example 8.15. Let ξ be a random variable not in L1, and Z be an independent

Bernoulli random variable with p = 1/2. Define a filtration

Ft =







{ /0,Ω} t < 1

σ(ξ ) t ∈ [1,2)

σ(ξ ,Z) t ≥ 2

and a process

Xt =

{

0 t < 2

ξ Z t ≥ 2

By taking the stopping times τn = n1{|ξ |<n}, we see that X is a local martingale,

but cannot be a martingale as E[|X2|] 6< ∞.

Example 8.16. Let B be a Brownian motion, and ξ an independent nonnegative

random variable not in L1. Then define Xt = Bξ 2t , in the filtration {F X
t+}t≥0. Then

E[|Xt |] = E[|Bξ 2t |] = E

[

E

[

|Bξ 2t |
∣
∣
∣ξ
]]

=
√

2t/πE[ξ ] = ∞

so X is not a martingale. However, ξ is F X
0 -measurable (we will see this from the

fact 〈X〉t = ξ t and right-continuity), so we can use the stopping times τn = n1{ξ<n}
to localize and hence verify Xτn is a martingale. As X is continuous, we can also

localize with τn = inf{t : |Xt | ≥ n}.
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More clever examples (including where {Xt}t∈R is uniformly integrable) are

possible.

Proposition 8.17. i. A non-negative continuous local martingale such that M0 ∈
L1 is a supermartingale.

ii. A continuous local martingale M such that there exists a random variable

Z ∈ L1 with |Mt | ≤ Z for every t ≥ 0 is a uniformly integrable martingale.

iii. If M is a continuous local martingale and M0 = 0 (or more generally M0 ∈
L1), the sequence of stopping times

Tn = inf{t ≥ 0 : |Mt | ≥ n}

reduces M.

iv. If M is a continuous local martingale, then for any stopping time ρ , the

stopped process Mρ is also a continuous local martingale.

Proof. (i) Write Mt =M0+Nt . By definition, there exists a sequence Tn of stopping

times that reduces N. Thus, if s ≤ t, for every n,

Ns∧Tn
= E[Nt∧Tn

|Fs].

We can add M0 to both sides (M0 is Fs-measurable and in L1) and we find

Ms∧Tn
= E[Mt∧Tn

|Fs].

Since M takes non-negative values, let n → ∞ and apply Fatou’s lemma for condi-

tional expectations to find

Ms ≥ E[Mt |Fs]. (23)

Taking s = 0, E[Mt ] ≤ E[M0] < ∞. So Mt ∈ L1 for every t ≥ 0, and (23) says that

M is a supermartingale.

(ii) By the same argument,

Ms∧Tn
= E[Mt∧Tn

|Fs].

Since |Mt∧Tn
| ≤ Z, this time apply the Dominated Convergence Theorem to see that

Mt∧Tn
converges in L1 (to Mt) and Ms = E[Mt |Fs].

The other two statements are immediate.

Theorem 8.18. A continuous local martingale M with M0 = 0 a.s., is a process of

finite variation if and only if M is indistinguishable from zero.

Remark 8.19. Continuity is critical here.
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Proof. Assume M is a continuous local martingale and of finite variation. Let

τn = inf{t ≥ 0 :

∫ t

0
|dMs| ≥ n}= inf{t ≥ 0 : V (M)t ≥ n},

which are stopping times since V (M)t =
∫ t

0 |dMs| is continuous and adapted.

Let N = Mτn , which is bounded since

|Nt |= |Mt∧τn
| ≤ |

∫ t∧τn

0
dMu| ≤

∫ t∧τn

0
|dMu| ≤ n,

and hence (Nt) is a martingale.

Let t > 0 and π = {0 = t0 < t1 < t2 < .. . < tm(π) = t} be a partition of [0, t]. Then

E[N2
t ] =

m(π)

∑
i=1

E[N2
ti
−N2

ti−1
] =

m(π)

∑
i=1

E
[
(Nti −Nti−1

)2
]

≤ E

[

( sup
1≤i≤m(π)

|Nti −Nti−1
|) · ∑ |Nti −Nti−1

|
︸ ︷︷ ︸

≤V (N)t=V (M)t∧τn≤n

]

≤ nE
[

sup
1≤i≤m(π)

|Nti −Nti−1
|
]
→ 0 as ‖π‖→ 0

(where ‖π‖ is the mesh of π), by the Dominated Convergence Theorem (since

|Nti −Nti−1
| ≤V (N)t ≤ n and so n is a dominating function).

It then follows by Fatou’s Lemma that

E[M2
t ] = E[ lim

n→∞
M2

t∧τn
]≤ lim

n→∞
E[M2

t∧τn
] = 0

which implies that Mt = 0 a.s., and so by continuity of paths, P[Mt = 0 ∀ t ≥ 0] =
1.

8.4 Quadratic variation of a continuous local martingale

If our martingales are going to be interesting, then they’re going to have unbounded

variation. But remember that we said that we’d use Brownian motion as a ba-

sic building block, and that while Brownian motion has infinite variation, it has

bounded quadratic variation, defined over [0,T ] by the limit (in probability)

lim
‖πn‖→0

N(πn)

∑
j=1

(
Bt j

−Bt j−1

)2
= T.

where {πn} is a sequence of partitions.

We are now going to see that the analogue of this process exists for any con-

tinuous local martingale. Ultimately, we shall see that the quadratic variation is in

some sense a ‘clock’ for a local martingale, but that will be made more precise in

the very last result of the course.
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Theorem 8.20. Let M be a continuous local martingale. There exists a unique (up

to indistinguishability) non-decreasing, continuous adapted finite variation pro-

cess (〈M,M〉t : t ≥ 0), starting in zero, such that (M2
t −〈M,M〉t : t ≥ 0) is a con-

tinuous local martingale.

Furthermore, for any T > 0 and any sequence of partitions πn = {0 = tn
0 <

tn
1 < .. . < tn

n(πn)
= T} with ‖πn‖= sup1≤i≤n(πn)(t

n
i − tn

i−1)→ 0 as n → ∞

〈M,M〉T = lim
n→∞

n(πn)

∑
i=1

(Mtn
i
−Mtn

i−1
)2, (24)

where the limit is in probability.

The process 〈M,M〉 is called the quadratic variation of M, or simply the in-

creasing process of M, and is often denoted 〈M,M〉t = 〈M〉t .

Sketch of a Proof (NOT EXAMINABLE). Uniqueness is a direct consequence of

Theorem 8.18 since if A,A′ are two such processes then
(
M2 −A− (M2 −A′)

)
=

A−A′ is a local martingale starting in zero and of finite variation, which implies

A = A′ by Theorem 8.18.

The idea of existence is as follows. First suppose that M is bounded. Take

a sequence of partitions 0 = tn
0 < · · · < tn

pn
= T with mesh tending to zero. Then

check that

Xn
t :=

np

∑
i=1

Mtn
i−1
(Mtn

i ∧t −Mtn
i−1∧t)

is a (bounded) martingale. Now observe that

M2
tn

j
−2Xn

tn
j
=

j

∑
i=1

(Mtn
i
−Mtn

i−1
)2.

A direct computation gives

lim
n,m→∞

E[(Xn
t −Xm

t )2] = 0,

and by Doob’s L2-inequality

lim
n,m→∞

E[sup
t≤T

(Xn
t −Xm

t )2] = 0.

By passing to a subsequence, Xnk → Y almost surely on [0,T ] where (Yt)t≤T is a

continuous process which inherits the martingale property from X .

M2
tn

j
−2Xn

tn
j
=

j

∑
i=1

(Mtn
i
−Mtn

i−1
)2 =: QV

πn

tn
j
(M)

is non-decreasing along tn
j : j ≤ N(πn). Letting n → ∞, M2

t − 2Yt is almost surely

non-decreasing and we set 〈M,M〉t = M2
t −2Yt .

To move to a general continuous local martingale, we consider a sequence of

stopped processes.

Details are in, for example, Le Gall’s book.
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Our theory of integration is going to be an ‘L2-theory’. Let us introduce the

martingales with which we are going to work. We are going to think of them

as being defined up to indistinguishability – nothing changes if we change the

process on a null set. Think of this as analogous to considering Lebesgue integrable

functions as being defined ‘almost everywhere’.

Definition 8.21. Let H 2 be the space of L2-bounded càdlàg martingales, i.e.

({Ft}t≥0,P)–martingales M s.t. sup
t≥0

E[M2
t ]< ∞,

and H 2,c the subspace consisting of continuous L2-bounded martingales. Finally,

let H
2,c

0 = {M ∈ H 2,c : M0 = 0 a.s.}.

We note that the space H 2 is also sometimes denoted M 2.

It follows from Doob’s L2-inequality that

E

[

sup
t≥0

M2
t

]

≤ 4sup
t≥0

E[M2
t ]<+∞, M ∈ H

2.

Consequently, {Mt : t ≥ 0} is bounded by a square integrable random variable

(supt≥0 |Mt |) and in particular is uniformly integrable. It follows from the martin-

gale convergence theorem that Mt = E[M∞|Ft ] for some square integrable random

variable M∞.

Conversely, we can start with a random variable Y ∈ L2(Ω,F∞,P) and define

a martingale Mt := E[Y |Ft ] ∈ H 2 (and M∞ = Y ).

Two L2-bounded martingales M,M′ are indistinguishable if and only if M∞ =
M′

∞ a.s. and so if we endow H with the norm

‖M‖H 2 :=
√

E[M2
∞] = ‖M∞‖L2(Ω,F∞,P), M ∈ H

2, (25)

then H 2 can be identified with the familiar L2(Ω,F∞,P) space.

Theorem 8.22. H 2,c is a closed subspace of H 2.

Proof. This is almost a matter of writing down definitions. Suppose that the se-

quence Mn ∈H 2,c converges in ‖·‖H 2 to some M ∈H 2. By Doob’s L2-inequality

E

[

sup
t≥0

|Mn
t −Mt |2

]

≤ 4‖Mn −M‖2
H 2 −→ 0, as n → ∞.

Passing to a subsequence, we have supt≥0 |Mnk
t −Mt | → 0 a.s. and hence M has

continuous paths a.s.,which completes the proof.

For continuous local martingales, the norm in (25) can be re-expressed in terms

of the quadratic variation:

Theorem 8.23. Let M be a continuous local martingale with M0 ∈ L2.
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i. TFAE

(a) M is a martingale, bounded in L2;

(b) E[〈M,M〉∞]< ∞.

Furthermore, if these properties hold, M2
t −〈M,M〉t is a uniformly integrable

martingale and, in particular, E[M2
∞] = E[M2

0 ]+E[〈M,M〉∞].

ii. TFAE

(a) M is a martingale and Mt ∈ L2 for every t ≥ 0;

(b) E[〈M,M〉t ]< ∞ for every t ≥ 0.

Furthermore, if these properties hold, M2
t −〈M,M〉t is a martingale.

Proof. The second statement will follow from the first on applying it to Mt∧a for

every choice of a ≥ 0.

To prove the first set of equivalences, without loss of generality, suppose that

M0 = 0 (or replace M by M−M0).

Suppose that M is a martingale, bounded in L2. Doob’s L2-inequality implies

that for every T > 0,

E[ sup
0≤t≤T

M2
t ]≤ 4E[M2

T ],

and so, letting T → ∞,

E[sup
t≥0

M2
t ]≤ 4sup

t≥0

E[M2
t ] =C < ∞.

Let Sn = inf{t ≥ 0 : 〈M,M〉t ≥ n}. Then the continuous local martingale M2
t∧Sn

−
〈M,M〉t∧Sn

is dominated by sups≥0 M2
s +n, which is integrable. By Proposition 8.17

this continuous local martingale is a uniformly integrable martingale, so E[M2
t∧Sn

−
〈M〉t∧Sn

] = 0, and hence

E[〈M,M〉t∧Sn
] = E[M2

t∧Sn
]≤ E[sup

s≥0

M2
s ]≤C < ∞.

Let n and then t tend to infinity and use the Monotone Convergence Theorem to

obtain E[〈M,M〉∞]< ∞.

Conversely, assume that E[〈M,M〉∞]< ∞. Set Tn = inf{t ≥ 0 : |Mt | ≥ n}. Then

the continuous local martingale M2
t∧Tn

−〈M,M〉t∧Tn
is dominated by n2 + 〈M,M〉∞

which is integrable. From Proposition 8.17 again, this continuous local martingale

is a uniformly integrable martingale and hence for every t ≥ 0,

E[M2
t∧Tn

] = E[〈M,M〉t∧Tn
]≤ E[〈M,M〉∞] =C′ < ∞. (26)

Let n → ∞ and use Fatou’s lemma to see that E[M2
t ] ≤ C′ < ∞, so (Mt)t≥0 is

bounded in L2.
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We still have to check that (Mt)t≥0 is a martingale. However, (26) shows that

(Mt∧Tn
)n≥1 is uniformly integrable and so converges both almost surely and in L1

to Mt for every t ≥ 0. Recalling that MTn is a martingale, L1 convergence implies,

for s > t,

Mt = lim
n

M
Tn
t = lim

n
E[MTn

s |Ft ] = E[lim
n

MTn
s |Ft ] = E[Ms|Ft ]

so M is a martingale.

Finally, if the two properties hold, then M2−〈M,M〉 is dominated by supt≥0 M2
t +

〈M,M〉∞, which is integrable, and so Proposition 8.17 again says that M2−〈M,M〉
is a uniformly integrable martingale.

Our previous theorem immediately yields that for a local martingale M with

M0 = 0, if E[〈M〉∞]< ∞ then

‖M‖2
H 2 = E[M2

∞] = E[〈M〉∞].

We can also deduce a complement to Theorem 8.18.

Corollary 8.24. Let M be a continuous local martingale with M0 = 0. Then the

following are equivalent:

i. M is indistinguishable from zero,

ii. 〈M〉t = 0 for all t ≥ 0 a.s.,

iii. M is a process of finite variation.

Proof. We already know that the first and third statements are equivalent. That

the first implies the second is trivial, so we must just show that the second implies

the first. We have 〈M〉∞ = limt→∞〈M〉t = 0. From Theorem 8.23, M ∈ H 2 and

E[M2
∞] = E[〈M〉∞] = 0 and so Mt = E[M∞|Ft ] = 0 almost surely.

We can see that the quadratic variation of a martingale is telling us something

about how its variance increases with time. We also need an analogous quantity

for the ‘covariance’ between two martingales. This is most easily defined through

polarisation.

Definition 8.25. The quadratic co-variation between two continuous local martin-

gales M,N is defined by

〈M,N〉 :=
1

2
(〈M+N,M+N〉−〈M,M〉−〈N,N〉) . (27)

It is often called the (angle) bracket process of M and N.

Proposition 8.26. For two continuous local martingales M,N

i. the process 〈M,N〉 is the unique finite variation process, zero at zero, such

that (MtNt −〈M,N〉t : t ≥ 0) is a continuous local martingale;
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ii. the mapping M,N 7→ 〈M,N〉 is bilinear and symmetric;

iii. for any stopping time τ ,

〈Mτ ,Nτ〉t = 〈Mτ ,N〉t = 〈M,Nτ〉t = 〈M,N〉τ∧t , t ≥ 0, a.s.; (28)

iv. for any t > 0 and a sequence of partitions πn of [0, t] with mesh converging

to zero

∑
ti∈πn

(Mti+1
−Mti)(Nti+1

−Nti)→ 〈M,N〉t , (29)

the convergence being in probability.

Proof. (i) (M +N)2
t − 〈M +N,M +N〉t is a continuous local martingale and by

adding and subtracting terms it is equal to

M2
t −〈M,M〉t
︸ ︷︷ ︸

l.mat

+N2
t −〈N,N〉t
︸ ︷︷ ︸

l.mat

+2
(
MtNt −

1

2
(〈M+N,M+N〉t −〈M,M〉t −〈N,N〉t)

)

︸ ︷︷ ︸

hence also a l.mat

Uniqueness follows from Theorem 8.18.

(iv) Note that

(Mt +Nt −Ms −Ns)
2 − (Mt −Ms)

2 − (Nt −Ns)
2 = 2(Mt −Ms)(Nt −Ns).

The asserted convergence then follows from Theorem 8.20

(ii) Both properties follow from (iv). Symmetry is obvious from the definition in

(27).

(iii) Follows from (iv).

Definition 8.27. Two continuous local martingales M, N, are said to be (very

strongly) orthogonal if 〈M,N〉= 0.

For example, if B and B′ are independent Brownian motions, then 〈B,B′〉= 0.

Remark 8.28. It follows that if M and N are two martingales bounded in L2 and

with M0N0 = 0 a.s., then (MtNt −〈M,N〉t , t ≥ 0) is a uniformly integrable martin-

gale. In particular, for every stopping time τ ,

E[MτNτ ] = E[〈M,N〉τ ]. (30)

Remark 8.29. Note that 〈M,N〉 = 0 is a stronger statement than E[M∞N∞] =
E[〈M,N〉∞] = 0. For example, consider W a Brownian motion and N = ξW, for

ξ independent of W with mean zero (F0-measurable). Then 〈W,N〉= ξ t 6= 0, but

E[〈W,N〉∞] = 0.
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Take M,N ∈ H 2,c, which we recall had the norm ‖M‖2
H 2,c = E[〈M,M〉∞] =

E[M2
∞]. Then we see that this norm is consistent with the inner product on H 2,c ×

H 2,c given by E[〈M,N〉∞] =E[M∞N∞] and, by the usual Cauchy–Schwarz inequal-

ity,

E[|〈M,N〉∞|] = E[|M∞N∞|]≤
√

E[〈M〉∞]E[〈N〉∞].

Actually, it is easy to obtain an almost sure version of this inequality, using that

∣
∣∑
(
Mti+1

−Mti

)(
Nti+1

−Nti

)∣
∣≤
√

∑
(
Mti+1

−Mti

)2
√

∑
(
Nti+1

−Nti

)2

and taking limits to deduce that

|〈M,N〉t | ≤
√

〈M〉t

√

〈N〉t .

It’s often convenient to have a more general version of this inequality.

Theorem 8.30 (Kunita–Watanabe inequality). Let M,N be continuous local mar-

tingales and K,H two measurable processes. Then for all 0 ≤ t ≤ ∞,

∫ t

0
|Hs||Ks||d〈M,N〉s| ≤

(∫ t

0
H2

s d〈M〉s

)1/2(∫ t

0
K2

s d〈N〉s

)1/2

a.s.. (31)

We omit the proof which approximates H, K by simple functions and then

essentially uses the Cauchy–Schwarz inequality for sums noted above.

8.5 Continuous semimartingales

Definition 8.31. A stochastic process X = (Xt : t ≥ 0) is called a continuous semi-

martingale if it can be written as

Xt = X0 +Mt +At , t ≥ 0 (32)

where M is a continuous local martingale, A is a continuous process of finite vari-

ation, and M0 = A0 = 0 a.s..

The decomposition is unique (up to indistinguishability). It should be remem-

bered that there is a filtration {Ft}t≥0 and a probability measure P implicit in our

definition.

Proposition 8.32. A continuous semimartingale is of finite quadratic variation and

in the notation above 〈X ,X〉= 〈M,M〉.

Proof. Fix t ≥ 0 and consider a sequence of partitions of [0, t], πm = {0 = t0 < t1 <
.. . < tnm

= t} with ‖πm‖→ 0 as m → ∞. Then

nm

∑
i=1

(Xti −Xti−1
)2 =

nm

∑
i=1

(Mti −Mti−1
)2

︸ ︷︷ ︸

(i)

+
nm

∑
i=1

(Ati −Ati−1
)2

︸ ︷︷ ︸

(ii)

+2
nm

∑
i=1

(Mti −Mti−1
)(Ati −Ati−1

)

︸ ︷︷ ︸

(iii)

.
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It follows from the properties of M and A that, as m → ∞,

(i)→ 〈M,M〉t ,

(ii)≤ sup
1≤i≤nm

|Ati −Ati−1
| ·Vt(A)→ 0 a.s. ,

(iii)≤ sup
1≤i≤nm

|Mti −Mti−1
| ·Vt(A)→ 0 a.s. .

If X ,Y are two continuous semimartingales, we can define their co-variation

〈X ,Y 〉 via the polarisation formula that we used for martingales. If Xt = X0 +Mt +
At and Yt = Y0 +Nt +A′

t , then 〈X ,Y 〉t = 〈M,N〉t .

9 Stochastic Integration

At the beginning of the course we argued that whereas classically differential equa-

tions take the form

dX(t) = a(t,X(t))dt,

in many settings, the dynamics of the physical quantity in which we are interested

may also have a random component and so perhaps take the form

dXt = a(t,Xt)dt +b(t,Xt)dBt .

We actually understand equations like this in the integral form:

Xt −X0 =
∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dBs.

If a is nice enough, then the first term has a classical interpretation. It is the second

term, or rather a generalisation of it, that we want to make sense of now.

The first approach will be to mimic what we usually do for construction of the

Lebesgue integral, namely work out how to integrate simple functions and then

extend to general functions through passage to the limit. We’ll then provide a very

slick, but not at all intuitive, approach that nonetheless gives us some ‘quick wins’

in proving properties of the integral.

9.1 Stochastic integral w.r.t. L2-bounded martingales

Remark on Notation: We are going to use the notation ϕ •M for the (Itô) stochas-

tic integral of ϕ with respect to M. This is not universally accepted notation; many

authors would write
∫ t

0 ϕsdMs for (ϕ •M)t . Moreover, for emphasis, when the inte-

grator is stochastic, we have used ‘•’ in place of the ‘·’ that we used for the Stieltjes

integral.
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We’re going to develop a theory of integration w.r.t. martingales in H 2,c. Re-

call that H
2,c

0 is the space of continuous martingales M, zero at zero, which are

bounded in L2. It is a Hilbert space with the inner product 〈M,N〉H 2,c = E[M∞N∞]
and induced norm

‖M‖H 2,c =
√

E[M2
∞] =

√

E[〈M〉∞].

(In a very real sense we are identifying H 2,c with L2.)

Define E to be the space of simple bounded process of the form

ϕt =
m

∑
i=0

ϕ(i)1(ti,ti+1](t), t ≥ 0, (33)

for some m∈N, 0≤ t0 < t1 < .. .< tm+1 and where ϕ(i) are bounded Fti-measurable

random variables. Define the stochastic integral ϕ •M of ϕ in (33) with respect to

M ∈ H 2,c via

(ϕ •M)t :=
m

∑
i=0

ϕ(i)(Mt∧ti+1
−Mt∧ti), t ≥ 0. (34)

If we write Mi
t := ϕ(i)(Mt∧ti+1

−Mt∧ti) then clearly Mi ∈ H 2,c and so ϕ •M is a

martingale. Moreover, since for i 6= j the intervals (ti, ti+1] and (t j, t j+1] are disjoint,

Mi
t M

j
t is a martingale and hence 〈Mi,M j〉t = 0. Using the bilinearity of the bracket

process then yields

〈ϕ •M〉t =
m

∑
i=0

〈Mi〉t =
m

∑
i=0

(

ϕ(i)
)2 (

〈M〉ti+1∧t −〈M〉ti∧t

)
=
∫ t

0
ϕ2

s d〈M〉s, t ≥ 0.

(35)

We already used the notation that if K is progressively measurable and A is of finite

variation, then

(K ·A)t =
∫ t

0
Ks(ω)dAs(ω), t ≥ 0.

In that notation

〈ϕ •M〉= ϕ2 · 〈M〉.
More generally, for N ∈ H 2,c,

〈ϕ •M,N〉t =
m

∑
i=0

〈Mi,N〉t =
m

∑
i=0

ϕ(i)
(
〈M,N〉ti+1∧t −〈M,N〉ti∧t

)

=
∫ t

0
ϕsd〈M,N〉s = (ϕ · 〈M,N〉)t .

(36)

Proposition 9.1. Let M ∈ H 2,c. The mapping ϕ 7→ ϕ •M is a linear map from E

to H
2,c

0 . Moreover,

‖ϕ •M‖2
H 2,c = E

[∫ ∞

0
ϕ2

t d〈M〉t

]

. (37)
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The proof is easy – we just need to show linearity. But given ϕ , ψ ∈ E , we use

a refinement of the partitions on which they are constant to write them as simple

functions with respect to the same partition and the result is trivial.

Remark 9.2. If we were considering martingales with jumps, then it would be

important that the processes in E are left continuous.

We are expecting an L2-theory – we have already found an expression for the

‘L2-norm’ of ϕ •M. Let us define the appropriate spaces more carefully.

Definition 9.3. Given M ∈ H 2,c we denote by L2(M) the space of progressively

measurable processes K such that

‖K‖2
L2(M) := E

[∫ ∞

0
K2

t d〈M〉t

]

<+∞. (38)

L2(M) is a Hilbert space, with inner product

H,K 7→ E

[∫ ∞

0
HtKtd〈M〉t

]

= E [(HK · 〈M〉)∞] .

We have E ⊆ L2(M) and (35) tells us that the map E → H2
0 given by ϕ 7→ ϕ •M

is a linear isometry. If we can show that the elementary functions are dense in

L2(M), this observation will allow us to define integrals of functions from L2(M)
with respect to M via a limiting procedure.

Proposition 9.4. Let M ∈ H 2,c. Then E is a dense vector subspace of L2(M).

Proof. It is enough to show that if K ∈ L2(M) is orthogonal to ϕ for all ϕ ∈ E , then

K = 0 (as an element of L2(M)). So suppose that 〈K,ϕ〉L2(M) = 0 for all ϕ ∈ E . Let

X = K · 〈M〉, i.e. Xt =
∫ t

0 Kud〈M〉u. This is well defined and, by Cauchy–Schwarz

E[|Xt |]≤ E

[∫ t

0
|Ku|d〈M〉u

]

≤
√

E

[∫ t

0
K2

u d〈M〉u

]
√

E〈M〉t <+∞

since M ∈H 2,c and K ∈ L2(M) (we took one of the functions to be identically one

in Cauchy–Schwarz).

Taking ϕ = ξ 1(s,t] ∈ E , with 0 ≤ s < t and ξ a bounded Fs-measurable r.v., we

have

0 = 〈K,ϕ〉L2(M) = E

[

ξ
∫ t

s
Kud〈M〉u

]

= E [ξ (Xt −Xs)] .

Since this holds for any Fs-measurable bounded ξ , we conclude that E[(Xt −
Xs)|Fs] = 0. In other words, X is a martingale. But X is also continuous and

of finite variation and hence X ≡ 0 a.s. Thus K = 0 d〈M〉− a.e. a.s. and hence

K = 0 in L2(M).
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We now know that any K ∈ L2(M) is a limit of simple processes ϕn → K. For

each ϕn we can define the stochastic integral ϕn •M. The isometry property then

shows that {ϕn •M}n∈N converges in H 2,c to some element that we denote K •M

and which does not depend on the choice of approximating sequence ϕn.

Theorem 9.5. Let M ∈ H 2,c. The mapping ϕ 7→ ϕ •M from E to H
2,c

0 defined

in (34) has a unique extension to a linear isometry from L2(M) to H
2,c

0 which we

denote K 7→ K •M.

Remark 9.6. For K ∈ L2(M), the martingale K •M is called the Itô stochastic

integral of K with respect to M and is often written as (K •M)t =
∫ t

0 KudMu. The

isometry property may be then written as

‖K •M‖2
H 2,c = E

[(∫ ∞

0
KtdMt

)2
]

= E

[∫ ∞

0
K2

t d〈M〉t

]

= ‖K‖2
L2(M). (39)

Notice that if B is standard Brownian motion and we calculate (B•B)t , then

(B•B)t = lim
‖π‖→0

N(π)−1

∑
j=0

Bt j

(

Bt j+1
−Bt j

)

. (40)

We also know already that the quadratic variation is

t = lim
‖π‖→0

N(π)−1

∑
j=0

(

Bt j+1
−Bt j

)2

= B2
t −B2

0 −2

N(π)−1

∑
j=0

Bt j

(

Bt j+1
−Bt j

)

,

and so rearranging we find
∫ t

0
BsdBs =

1

2

(

B2
t −B2

0 − t
)

=
1

2

(

B2
t − t

)

.

This is not what one would have predicted from classical integration theory (the

extra term here comes from the quadratic variation).

Even more strangely, it matters that in (40) we took the left endpoint of the in-

terval for evaluating the integrand. On the problem sheet, you are asked to evaluate

lim
‖π‖→0

∑Bt j+1

(

Bt j+1
−Bt j

)

, and lim
‖π‖→0

∑
Bt j

+Bt j+1

2

(

Bt j+1
−Bt j

)

.

Each gives a different answer.

We can more generally define

∫ T

0
f (Bs)◦dBs = lim

‖π‖→0
∑
( f (Bt j

)+ f (Bt j+1
)

2

)(

Bt j+1
−Bt j

)

.

This is the so-called Stratonovich integral, and has the advantage that from the

point of view of calculations, the rules of Newtonian calculus hold true. From a

modelling perspective however, it can be the wrong choice. For example, suppose

that we are modelling the change in a population size over time and we use [ti, ti+1)
to represent the (i+1)st generation. The change over (ti, ti+1) will be driven by the

number of adults, so the population size at the beginning of the interval.
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9.2 Intrinsic characterisation of stochastic integrals using the quadratic

co-variation

We can also characterise the Itô integral in a slightly different way.

Theorem 9.7. Let M ∈ H 2,c. For any K ∈ L2(M) there exists a unique element in

H
2,c

0 , denoted K •M, such that

〈K •M,N〉= K · 〈M,N〉, ∀N ∈ H
2,c. (41)

Furthermore, ‖K •M‖H 2,c = ‖K‖L2(M) and the map

K 7→ K •M

L2(M)→ H
2,c

0

is a linear isometry.

Proof. We first check uniqueness. Suppose that there are two such elements, X

and X ′. Then

〈X ,N〉−〈X ′,N〉= 〈X −X ′,N〉 ≡ 0, ∀N ∈ H
2,c.

Taking N = X −X ′ we conclude, by Corollary 8.24, that X = X ′.
Now let us verify (41) for the Itô integral.

Fix N ∈ H 2,c. First note that for K ∈ L2(M) the Kunita–Watanabe inequality

shows that

E

[∫ ∞

0
|Ks||d〈M,N〉s|

]

≤ ‖K‖L2(M)‖N‖H 2,c < ∞

and thus the variable
∫ ∞

0
Ksd〈M,N〉s =

(

K · 〈M,N〉
)

∞

is well defined and in L1.

If K is an elementary process, in the notation of (34) and (35),

〈K •M,N〉=
m

∑
i=0

〈Mi,N〉

and

〈Mi,N〉t = ϕ(i)
(

〈M,N〉ti+1∧t −〈M,N〉ti∧t

)

,

so

〈K •M,N〉t = ∑ϕ(i)
(

〈M,N〉ti+1∧t −〈M,N〉ti∧t

)

=
∫ t

0
Ksd〈M,N〉s.

Now observe that the mapping X 7→ 〈X ,N〉∞ is continuous from H 2,c into L1.

Indeed, by Kunita–Watanabe

E

[

|〈X ,N〉|
]

≤ E

[

〈X ,X〉∞

]1/2

E

[

〈N,N〉∞

]1/2

= ‖N‖H 2,c‖X‖H 2,c .
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So if Kn is a sequence in E such that Kn → K in L2(M),

〈K •M,N〉∞ = lim
n→∞

〈Kn •M,N〉∞ = lim
n→∞

(

Kn · 〈M,N〉
)

∞
=
(

K · 〈M,N〉
)

∞
,

where the convergence is in L1 and the last equality is again a consequence of

Kunita–Watanabe by writing

E

[
∣
∣
∣
∣

∫ ∞

0

(

Kn
s −Ks

)

d〈M,N〉s

∣
∣
∣
∣

]

≤ E

[

〈N,N〉∞

]1/2

‖Kn −K‖L2(M).

We have thus obtained

〈K •M,N〉∞ =
(

K · 〈M,N〉
)

∞
,

but replacing N by the stopped martingale Nt in this identity also gives

〈K •M,N〉t =
(

K · 〈M,N〉
)

t

which completes the proof of (41).

We could write the relationship (41) as

〈∫ ·

0
KsdMs,N

〉

t
=
∫ t

0
Ksd〈M,N〉s ;

that is, the stochastic integral ‘commutes’ with the bracket. One important conse-

quence is that if M ∈ H 2,c and K ∈ L2(M), then applying (41) twice gives

〈K •M,K •M〉= K ·
(

K · 〈M,M〉
)

= K2 · 〈M,M〉.

In other words, the bracket process of
∫

KsdMs is
∫

K2
s d〈M,M〉s. More generally,

for N another martingale and H ∈ L2(N),

〈∫ ·

0
HsdNs,

∫ ·

0
KsdMs

〉

t
=
∫ t

0
HsKsd〈M,N〉s.

Proposition 9.8 (Associativity of stochastic integration). Let H ∈ L2(M). If K is

progressive, then KH ∈ L2(M) if and only if K ∈ L2(H •M). In that case,

(KH)•M = K • (H •M).

(This is the analogue of what we already know for finite variation processes,

where K · (H ·A) = (KH) ·A.)

Proof.

E

[∫ ∞

0
K2

s H2
s d〈M,M〉s

]

= E

[∫ ∞

0
K2

s d〈H •M,H •M〉s

]

,
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which gives the first assertion.

For the second, for N ∈ H 2,c we write

〈(KH)•M,N〉 = KH · 〈M,N〉= K · (H · 〈M,N〉)
= K · 〈H •M,N〉= 〈K • (H •M),N〉,

and by uniqueness in (41) this implies

(KH)•M = K • (H •M).

Recall that if M ∈ H 2,c and τ is a stopping time, then Mτ = (Mt∧τ , t ≥ 0)
denotes the stopped process, which is itself a martingale and clearly Mτ ∈ H 2,c.

For any N ∈ H 2,c we have

〈Mτ ,N〉= 〈M,N〉τ = 1[0,τ] · 〈M,N〉= 〈1[0,τ] •M,N〉,

so by uniqueness in Theorem 9.7, 1[0,τ] •M = Mτ .

In fact a much more general property holds true.

Proposition 9.9 (Stopped stochastic integrals). Let M ∈ H 2,c, K ∈ L2(M) and τ
be a stopping time. Then

(K •M)τ = K •Mτ = K1[0,τ] •M.

Proof. We already argued above that the result holds for K ≡ 1.

Associativity says

K •Mτ = K •
(
1[0,τ] •M

)
= K1[0,τ] •M.

Applying the same result to the martingale K •M we obtain

(K •M)τ = 1[0,τ] • (K •M) = 1[0,τ]K •M,

which gives the desired equalities.

9.3 Extensions: stochastic integration with respect to continuous semi-

martingales

Definition 9.10. For a continuous local martingale M, denote by L2
loc(M) the space

of progressively measurable processes K such that

∀t ≥ 0

∫ t

0
K2

s d〈M〉s <+∞ a.s.
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Theorem 9.11. Let M be a continuous local martingale. For any K ∈ L2
loc(M)

there exists a unique continuous local martingale, zero in zero, denoted K •M and

called the Itô integral of K with respect to M, such that for any continuous local

martingale N

〈K •M,N〉= K · 〈M,N〉. (42)

If M ∈ H 2,c and K ∈ L2(M) then this definition coincides with the previous one.

Proof. We only sketch the proof. Not surprisingly, we use a stopping argument.

For every n ≥ 1, set

τn = inf

{

t ≥ 0 :

∫ t

0
(1+K2

s )d〈M〉s ≥ n

}

,

so that τn is a sequence of stopping times that increases to infinity. Since 〈Mτn〉∞ =
〈M〉τn

≤ n, the stopped martingale Mτn is in H 2,c. Also

∫ ∞

0
K2

s d〈Mτn ,Mτn〉s =
∫ τn

0
K2

s d〈M,M〉s ≤ n,

so that K ∈ L2(Mτn) and the definition of K •Mτn makes sense. If m > n,

K •Mτn = (K •Mτm)τn

so there is a unique process, that we denote K •M such that

(K •M)τn = K •Mτn

and (K •M)t = limn→∞(K •Mτn)t and so, since (K •Mτn) is a martingale, the pro-

cess K •M is a continuous local martingale with reducing sequence τn.

If N is a continuous local martingale (and without loss of generality N0 = 0),

we consider a reducing sequence

τ̃n = inf{t ≥ 0 : |Nt | ≥ n} and set ρn := τn ∧ τ̃n.

Then Nρn ∈ H
2,c

0 and hence

〈K •M,N〉ρn =〈(K •M)ρn ,Nρn〉 τn≥ρn
= 〈(K •Mτn)ρn ,Nρn〉 (28)

= 〈K •Mτn ,Nρn〉
Thm 9.7
= K · 〈Mτn ,Nρn〉 (28)

= K · 〈M,N〉ρn = (K · 〈M,N〉)ρn ,

so that 〈K •M,N〉 = K · 〈M,N〉 as required. Uniqueness of K •M follows as in

Theorem 9.7.

Naturally, we’re going to define an integral with respect to a continuous semi-

martingale X = X0 +M+A as a sum of integrals w.r.t. M and w.r.t. A.
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Definition 9.12. Let X = X0 +M+A be a continuous semimartingale. The space

of X-stochastically integrable processes is given by

L(X) := L2
loc(M)∩L1

loc(|dA|),

that is K ∈ L(X) if there are stopping times τn → ∞ such that

E

[∫ τn

0
K2

t d〈M〉t

]

< ∞ and

∫ τn

0
|Kt ||dAt |< ∞ a.s.

A subset of such integrands, particularly convenient since it does not depend

on X , is given by

Definition 9.13. We say that a progressively measurable process K is locally bounded

if

sup
u≤t

|Ku|<+∞ ∀t ≥ 0, a.s.

In particular, any adapted process with continuous sample paths is locally

bounded.

Proposition 9.14. If K is progressively measurable and locally bounded, then it is

in L(X) for every continuous semimartingale X.

Proof. Take τn = inf
{

T :
∫ T

0 K2
t d〈M〉t +

∫ T
0 |Kt ||dAt | ≥ n

}
.

Definition 9.15. Let X = X0 +M +A be a continuous semimartingale and K ∈
L(X). The Itô stochastic integral of K with respect to X is the continuous semi-

martingale K •X defined by

K •X := K •M+K ·A

often written

(K •X)t =
∫ t

0
KsdXs =

∫ t

0
KsdMs +

∫ t

0
KsdAs.

This integral inherits all the nice properties of the Stieltjes integral and the Itô

integral that we have already derived (linearity, associativity, stopping etc.).

And of course, it is still the case for an elementary function ϕ ∈ E that

(ϕ •X)t =
m

∑
i=1

ϕ(i)
(

Xti+1∧t −Xti∧t

)

.

We should also like to know how our integral behaves under limits.

Proposition 9.16 (Stochastic Dominated Convergence Theorem). Let X be a con-

tinuous semimartingale and Kn a sequence in L(X) with Kn
t → 0 as n → ∞ a.s.

for all t. Further suppose that |Kn
t | ≤ Kt for all n where K ∈ L(X). Then Kn •X

converges to zero in probability and, more precisely,

∀t ≥ 0 sup
s≤t

∣
∣
∣
∣

∫ s

0
Kn

u dXu

∣
∣
∣
∣
−→ 0 in probability as n → ∞.
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Proof. We can treat the finite variation part, X0 +A, and the local martingale part,

M, separately. For the first, note that

∣
∣
∣
∣

∫ t

0
Kn

u dAu

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ t

0
Kn

u dA+
u −

∫ t

0
Kn

u dA−
u

∣
∣
∣
∣

≤
∫ t

0
|Kn

u |dA+
u +

∫ t

0
|Kn

u |dA−
u =

∫ t

0
|Kn

u ||dAu|.

The a.s. pointwise convergence of Kn to 0, together with the bound |Kn| ≤ K, allow

us to apply the (usual) Dominated Convergence Theorem to conclude that, for any

t > 0,
∫ t

0 |Kn
u ||dAu| converges to 0 a.s. (in fact, as

∫ t
0 |Kn

u ||dAu| is non-decreasing in

t, the convergence is uniform on any compact interval).

For the continuous local martingale part M, let (τm) be a reducing sequence

such that Mτm ∈ H
2,c

0 and K ∈ L2(Mτm). Then, by the Itô isometry,

‖Kn•Mτm‖2
H 2,c =E

[(∫ τm

0
Kn

t dMt

)2
]

=E

[∫ ∞

0
(Kn

t )
21[0,τm](t)d〈M〉t

]

= ‖Kn‖2
L2(Mτm ).

The right hand side tends to zero by the usual Dominated Convergence Theorem.

For a fixed t ≥ 0, and any given ε > 0, we may take m large enough that P[τm ≤
t]≤ ε/2. We then have

P

[

sup
s≤t

|(Kn •M)s|> ε

]

≤ P

[

sup
s≤t∧τm

|(Kn •M)s|> ε

]

+ ε/2

≤ 1

ε2
‖Kn •Mτm‖2

H 2,c + ε/2 ≤ ε ,

for n large enough.

From this we can also confirm that even in their most general form our stochas-

tic integrals can be thought of as limits of integrals of simple functions.

Proposition 9.17. Let X be a continuous semimartingale and K a left-continuous

process in L(X). If πn is a sequence of partitions of [0, t] with mesh converging to

zero then

∑
ti∈πn

Kti(Xti+1
−Xti)−→

∫ t

0
KsdXs in probability as n → ∞.

9.4 Itô’s formula and its applications

We already saw that the stochastic integral of Brownian motion with respect to

itself did not behave as we would expect from Newtonian calculus. So what are

the analogues of integration by parts and the chain rule for stochastic integrals?
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Proposition 9.18 (Integration by parts). If X and Y are two continuous semimartin-

gales then

XtYt = X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X ,Y 〉t , t ≥ 0 a.s. (43)

= X0Y0 +(X •Y )t +(Y •X)t + 〈X ,Y 〉t .

Proof. Fix t and let πn be a sequence of partitions of [0, t] with mesh converging

to zero. Note that

XtYt −XsYs = Xs(Yt −Ys)+Ys(Xt −Xs)+(Xt −Xs)(Yt −Ys)

so for any n

XtYt −X0Y0 = ∑
ti∈πn

(

Xti(Yti+1
−Yti)+Yti(Xti+1

−Xti)+(Xti+1
−Xti)(Yti+1

−Yti)
)

−→ (X •Y )t +(Y •X)t + 〈X ,Y 〉t as n → ∞.

Remark 9.19. Comparing with the finite variation case with jumps (Proposition

8.8), we see that the ‘product of jumps’ term has become the ‘quadratic variation’

term.

Theorem 9.20 (Itô’s formula). Let X1, . . . ,Xd be continuous semimartingales and

F : Rd → R a C2 function. Then (F(X1
t , . . . ,X

d
t ) : t ≥ 0) is a continuous semi-

martingale and up to indistinguishability

F(X1
t , . . . ,X

d
t ) =F(X1

0 , . . . ,X
d
0 )+

d

∑
i=1

∫ t

0

∂F

∂xi
(X1

s , . . . ,X
d
s )dX i

s

+
1

2
∑

1≤i, j≤d

∫ t

0

∂ 2F

∂xi∂x j
(X1

s , . . . ,X
d
s )d〈X i,X j〉s.

(44)

In particular, for d = 1, we have

F(Xt) = F(X0)+
∫ t

0
F ′(Xs)dXs +

1

2

∫ t

0
F ′′(Xs)d〈X〉s.

Proof. Let X i = X i
0 +Mi +Ai be the semimartingale decomposition of X i and de-

note by V i the total variation process of Ai. Let

τ i
r = inf{t ≥ 0 : |X i

t |+V i
t + 〈Mi〉t > r},

and τr = min{τ i
r, i = 1, . . . ,d}. Then (τr)r≥0 is a family of stopping times with

τr ↑∞. It is sufficient to prove (44) up to time τr. We will prove that the result holds

for polynomials and then the full result follows by approximating C2 functions by

polynomials.
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First note that it is obvious that the set of functions for which the formula holds

is a vector space containing the functions F ≡ 1 and F(x1, . . . ,xd) = xi for i ≤ d.

We now check that if (44) holds for two functions F and G, then it holds for

the product FG. Integration by parts yields

FtGt −F0G0 =
∫ t

0
FsdGs +

∫ t

0
GsdFs + 〈F,G〉t . (45)

By associativity of stochastic integration, and because (44) holds for G,

∫ t

0
FsdGs =

d

∑
i=1

∫ t

0
F(Xs)

∂Gs

∂xi
dX i

s +
1

2
∑

1≤i, j≤d

∫ t

0
F(Xs)

∂ 2Gs

∂xi∂x j
d〈X i,X j〉s,

with a similar expression for
∫ t

0 GsdFs. Using the fact that (44) holds for F and G,

we also have

〈F,G〉t =
d

∑
i=1

d

∑
j=1

∫ t

0

∂Fs

∂xi

∂Gs

∂x j
d〈X i,X j〉s.

Substituting these into (45), we obtain Itô’s formula for FG.

To pass to a general C2 function F , the Stone–Weierstrass theorem (see ap-

pendix, Theorem C.12) allows us to approximate the second derivative of F uni-

formly on compacts by a polynomial (and hence F ′ and F are also uniformly ap-

proximated on compacts). Using the dominated convergence theorem (and the fact

that everything is nicely bounded up to time τr), we have the result up to time τr,

and then we send r → ∞.

As a first application of this, suppose that M is a continuous local martingale

and A is a process of finite variation. Then 〈M,A〉 ≡ 0 and applying Itô’s formula

with X1 = M and X2 = A yields

F(Mt ,At) = F(M0,A0)+
∫ t

0

∂F

∂m
(Ms,As)dMs +

∫ t

0

∂F

∂a
(Ms,As)dAs

+
1

2

∫ t

0

∂ 2F

∂m2
(Ms,As)d〈M〉s.

Note that this gives us the semimartingale decomposition of F(Mt ,At) and we can,

for example, read off the conditions on F under which we recover a local martin-

gale. In particular, taking F(x,y) = exp(λx− λ 2

2
y) with X1 = M and X2 = 〈M,M〉,

we obtain:

Proposition 9.21. Let M be a continuous local martingale and λ ∈ R. Then

E
λ (M)t := exp

(

λMt −
λ 2

2
〈M〉t

)

, t ≥ 0, (46)

is a continuous local martingale. In fact the same holds true for any λ ∈ C with

the real and imaginary parts being local martingales.
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Proof. Let F(x,y) = exp
(

λx− λ 2

2
y
)

. F ∈ C2(R2,C) so we may apply Itô’s for-

mula to E λ (M)t = F(Mt ,〈M〉t). Computing the partial derivatives and simplifying

gives:

E
λ (M)t = E

λ (M)0 +
∫ t

0

∂

∂x
Fλ (Ms,〈M〉s)dMs.

Note that we have ∂
∂x

F(x,y) = λF(x,y) so that we could have written this as

E
λ (M)t = E

λ (M)0 +λ
∫ t

0
E

λ (M)sdMs

or in ‘differential form’ as

dE
λ (M)t = λE

λ (M)tdMt

which shows E λ (M) solves the stochastic exponential differential equation driven

by M: dYt = λYtdMt .

Here is a beautiful application of exponential martingales:

Theorem 9.22 (Lévy’s characterisation of Brownian motion). Let M be a contin-

uous local martingale starting at zero. Then M is a standard Brownian motion if

and only if 〈M〉t = t a.s. for all t ≥ 0.

Proof. We know that the quadratic variation of a Brownian motion B is given by

〈B〉t = t.

Suppose M is a continuous local martingale starting in zero with 〈M〉t = t a.s.

for all t ≥ 0. Then, by Proposition 9.21,

exp

(

iξ Mt +
ξ 2

2
t

)

, t ≥ 0

is a local martingale for any ξ ∈ R and, since it is bounded, it is a martingale. Let

0 ≤ s < t. We have

E

[

exp

(

iξ Mt +
ξ 2

2
t

)∣
∣
∣Fs

]

= exp

(

iξ Ms +
ξ 2

2
s

)

which we can rewrite as

E

[

eiξ (Mt−Ms)
∣
∣
∣Fs

]

= e−
ξ 2

2
(t−s). (47)

In other words, Mt −Ms is centred Gaussian with (conditional) variance t − s.

It follows also from (47) that for A ∈ Fs,

E

[

1Aeiξ (Mt−Ms)
]

= P[A]E
[

eiξ (Mt−Ms)
]

,

so fixing A ∈ Fs with P[A]> 0 and writing PA = P[· ∩A]/P[A] (which is a proba-

bility measure on Fs) for the conditional probability given A, we have that Mt −Ms

has the same distribution under P as under PA and so Mt −Ms is independent of Fs

and we have that M is an {Ft}t≥0-Brownian motion.
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So the quadratic variation is capturing all the information about M. This is sur-

prising – recall that it is a special property of Gaussians that they are characterised

by their means and the variance-covariance matrix, but in general we need to know

much more. It also shows we didn’t really need the Gaussian assumption in our

definition of Brownian motion, it’s guaranteed by the independence and variance

assumptions.

It turns out that what we just saw for Brownian motion has a powerful con-

sequence for all continuous local martingales – they are characterised by their

quadratic variation and, in fact, they are all time changes of Brownian motion.

Theorem 9.23 (Dambis–Dubins–Schwarz Theorem). Let M be an ({Ft}t≥0,P))-
continuous local martingale with M0 = 0 and 〈M〉∞ = ∞ a.s. Let τs := inf{t ≥ 0 :

〈M〉t > s}. Then the process B defined by Bs := Mτs
, is an ({Fτs

}s≥0,P)-Brownian

motion and Mt = B〈M〉t
, ∀t ≥ 0 a.s.

Proof. Note that τs is the first hitting time of an open set (s,∞) for an adapted

process 〈M〉 with continuous sample paths, and hence τs is a stopping time (recall

that {Ft}t≥0 is right-continuous). Further, 〈M〉∞ = ∞ a.s. implies that τs < ∞ a.s.

The process (τs : s ≥ 0) is non-decreasing and right-continuous (in fact s → τs is

the right-continuous inverse of t → 〈M〉t). Let Gs := Fτs
. Note that it satisfies

the usual conditions. The process B is right continuous by continuity of M and

right-continuity of τ . We have

lim
u↑s

Bu = lim
u↑s

Mτu
= Mτs− .

But[τs−,τs] is either a point or an interval of constancy of 〈M〉. The latter are

known (exercise) to coincide a.s. with the intervals of constancy of M and hence

Mτs− = Mτs
= Bs so that B has a.s. continuous paths. To conclude that B is a (Gs)-

Brownian motion, by Lévy’s theorem, it remains to show that (Bs) and (B2
s − s) are

(Gs)-local martingales.

Note that Mτn and (Mτn)2−〈M〉τn are uniformly integrable martingales. Taking

0 ≤ u < s < n and applying the Optional Stopping Theorem we obtain

E[Bs|Gu] = E[Mτn
τs
|Fτu

] = Mτn
τu
= Mτu

= Bu

and

E[B2
s −s|Gu] =E

[
(Mτn

τs
)2 −〈M〉τn

τs
|Fτu

]
=(Mτn

τu
)2−〈M〉τn

τu
=(Mτu

)2−〈M〉τu
=B2

u−u,

where we used continuity of 〈M〉 to write 〈M〉τu
= u. It follows that B is indeed a

(Gs)-Brownian motion.

Finally, B〈M〉t
= Mτ〈M〉t

= Mt , again since the intervals of constancy of M and of

〈M〉 coincide a.s. so that s → τs is constant on [t,τ〈M〉t
].
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A Review of some basic measure theoretic probability

A.1 The Monotone Class Lemma/ Dynkin’s π −λ Theorem

There are multiple names used for this result (often with slightly different formu-

lations).

Let E be an arbitrary set and let P(E) be the set of all subsets of E.

Definition A.1. A subset M of P(E) is called a monotone class, or a Dynkin

system/ λ -system, if

i. E ∈ M ;

ii. if A,B ∈ M and A ⊂ B, then B\A ∈ M ;

iii. if (An)n≥0 is an increasing sequence of subsets of E such that An ∈ M , then

∪n≥0An ∈ M .

The monotone class generated by an arbitrary subset C of P(E) is

M (C ) =
⋂

{D : D monontone class,C ⊂ D}.

Equivalently, M is a montone class if

i. E ∈ M ;

ii. if A,B ∈ M and A ⊂ B, then B\A ∈ M ;

iii. if (An)n≥0 is a sequence of subsets of E such that Ai ∩A j = /0 for i 6= j, then

∪n≥0An ∈ M .

Definition A.2. A collection I of subsets of E such that /0 ∈ I and for all A,

B ∈ I , A∩B ∈ I is called a π-system.

You may have seen the result expresed as:

Theorem A.3 (Dynkin’s π −λ Theorem). If P is a π-system and D is a λ -system

such that P ⊆ D, then σ(P)⊆ σ(D).

Le Gall’s (equivalent) formulation is:

Lemma A.4 (Monotone class lemma). If C ⊂ P(E) is stable under finite inter-

sections, then M = σ(C ).

In other words, a Dynkin system which is also a π-system is a σ -algebra.

Here are some useful consequences:

i. Let A be a σ -field of E and let µ , ν be two probability measures on (E,A ).
Assume that there exists C ⊂ A which is stable under finite intersections

and such that σ(C ) = A and µ(A) = ν(A) for every A ∈ C , then µ = ν .

(Use that G = {A ∈ A : µ(A) = ν(A)} is a montone class.)
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ii. Let (Xi)i∈I be an arbitrary collection of random variables, and let G be

a σ -field on some probability space. In order to show that the σ -fields

σ(Xi : i ∈ I) and G are independent, it is enough to verify that (Xi1 , . . . ,Xip
)

is independent of G for any choice of the finite set {i1, . . . , ip} ⊂ I. (Observe

that the class of all events that depend on a finite number of the Xi is stable

under finite intersections and generates σ(Xi, i ∈ I).)

iii. Let (Xi)i∈I be an arbitrary collection of random variables and let Z be a

bounded real variable. Let i0 ∈ I. In order to verify that E[Z|Xi, i ∈ I] =
E[Z|Xi0 ], it is enough to show that E[Z|Xi0 ,Xi1 . . .Xip

] = E[Z|Xi0 ] for any

choice of the finite collection {i1, . . . ip} ⊂ I. (Observe that the class of all

events A such that E[1AZ] = E[1AE[Z|Xi0 ]] is a monotone class.)

A.2 Convergence of random variables.

a) Xn → X a.s. iff P[ω : limn→∞ Xn(ω) = X(ω)] = 1.

b) Xn → X in probability iff ∀ε > 0, limn→∞P[|Xn −X |> ε ] = 0.

c) Xn converges to X in distribution (denoted Xn ⇒ X) iff limn→∞P{Xn ≤ x}=
P{X ≤ x} ≡ FX(x) for all x at which FX is continuous.

Theorem A.5. a) implies b) implies c).

Proof. (b ⇒ c) Let ε > 0. Then

P{Xn ≤ x}−P{X ≤ x+ ε} = P{Xn ≤ x,X > x+ ε}−P{X ≤ x+ ε ,Xn > x}
≤ P{|Xn −X |> ε}

and hence limsupP{Xn ≤ x} ≤ P{X ≤ x + ε}. Similarly, liminfP{Xn ≤ x} ≥
P{X ≤ x− ε}. Since ε is arbitrary, the implication follows. �

A.3 Convergence in probability.

a) If Xn →X in probability and Yn →Y in probability then aXn+bYn → aX +bY

in probability.

b) If Q : R→R is continuous and Xn → X in probability then Q(Xn)→ Q(X)
in probability.

c) If Xn → X in probability and Xn −Yn → 0 in probability, then Yn → X in

probability.

Remark A.6. (b) and (c) hold with convergence in probability replaced by con-

vergence in distribution; however (a) is not in general true for convergence in

distribution.
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A.4 The basic convergence theorems

Theorem A.7. (Bounded Convergence Theorem) Suppose that Xn ⇒ X and that

there exists a constant b such that P(|Xn| ≤ b) = 1. Then E[Xn]→ E[X ].

Proof. Let {xi} be a partition of R such that FX is continuous at each xi. Then

∑
i

xiP{xi < Xn ≤ xi+1} ≤ E[Xn]≤ ∑
i

xi+1P{xi < Xn ≤ xi+1}

and taking limits we have

∑
i

xiP{xi < X ≤ xi+1} ≤ limn→∞E[Xn]

≤ limn→∞E[Xn]≤ ∑
i

xi+1P{xi < X ≤ xi+1}

As max |xi+1 − xi| → 0, the left and right sides converge to E[X ], as required. �

Lemma A.8. Let X ≥ 0 a.s. Then limM→∞E[X ∧M] = E[X ].

Proof. Check the result first for X having a discrete distribution and then extend to

general X by approximation. �

Theorem A.9. (Monotone Convergence Theorem.) Suppose 0 ≤ Xn ≤ X and Xn →
X in probability. Then limn→∞E[Xn] = E[X ].

Proof. For M > 0

E[X ]≥ E[Xn]≥ E[Xn ∧M]→ E[X ∧M]

where the convergence on the right follows from the bounded convergence theo-

rem. It follows that

E[X ∧M]≤ liminf
n→∞

E[Xn]≤ limsup
n→∞

E[Xn]≤ E[X ]

and the result follows by Lemma A.8.

Lemma A.10. (Fatou’s lemma.) If Xn ≥ 0 and Xn ⇒ X, then liminfE[Xn]≥ E[X ].

Proof. Since E[Xn]≥ E[Xn ∧M] we have

liminfE[Xn]≥ liminfE[Xn ∧M] = E[X ∧M].

By the Monotone Convergence Theorem E[X ∧M]→ E[X ] and the result follows.

�

Theorem A.11. (Dominated Convergence Theorem) Assume Xn ⇒ X, Yn ⇒ Y ,

|Xn| ≤ Yn, and E[Yn]→ E[Y ]< ∞. Then E[Xn]→ E[X ].
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Proof. For simplicity, assume in addition that Xn +Yn ⇒ X +Y and Yn −Xn ⇒
Y − X (otherwise consider subsequences along which (Xn,Yn) ⇒ (X ,Y )). Then

by Fatou’s lemma liminfE[Xn +Yn] ≥ E[X +Y ] and liminfE[Yn − Xn] ≥ E[Y −
X ]. From these observations liminfE[Xn] + limE[Yn] ≥ E[X ] +E[Y ], and hence

liminfE[Xn] ≥ E[X ]. Similarly liminfE[−Xn] ≥ E[−X ] and limsupE[Xn] ≤ E[X ]
�

Lemma A.12. (Markov’s inequality)

P{|X |> a} ≤ E[|X |]/a, a ≥ 0.

Proof. Note that |X | ≥ a1{|X |>a}. Taking expectations proves the desired inequality.

�

A.5 Uniform Integrability

If X is an integrable random variable (that is E[|X |] < ∞) and Λn is a sequence

of sets with P[Λn] → 0, then E[|X1Λn
|] → 0 as n → ∞. (This is a consequence

of the DCT since |X | dominates |X1Λn
| and |X1Λn

| → 0a.s.) Uniform integrability

demands that this type of property holds uniformly for random variables from some

class.

Definition A.13 (Uniform Integrability). A class C of random variables is called

uniformly integrable if given ε > 0 there exists K ∈ (0,∞) such that

E[|X |1{|X |>K}]< ε for all X ∈ C .

Proposition A.14. Suppose that {Xα ,α ∈ I} is a uniformly integrable family of

random variables on some probability space (Ω,F ,P). Then

i.

sup
α

E[|Xα |]< ∞,

ii.

P[|Xα |> N]→ 0 as N → ∞, uniformly in α .

iii.

E[|Xα |1Λ]→ 0 as P[Λ]→ 0, uniformly in α .

Conversely, either i and iii or ii and iii implies uniform integrability.

Theorem A.15 (de la Vallée-Poussin criterion). Let K be a subset of L1. Suppose

there is a positive function φ defined on [0,∞[ such that limt→∞ t−1φ(t) = +∞ and

supX∈K E
[
φ(|X |)

]
< ∞. Then K is uniformly integrable.
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Proof. Write λ = supX∈K E[φ ◦|X |] and fix ε > 0. Put a= ε−1λ and choose c large

enough that t−1φ(t)≥ a if t ≥ c. Then, on the set {|X | ≥ c}, we have

|X | ≤ a−1(φ ◦ |X |),

so
∫

{|X |≥c}
|X(ω)|dP(ω)≤ a−1

∫

{|X |≥c}
(φ ◦ |X |)dP ≤ a−1E

[
φ ◦ |X |

]
≤ ε .

Therefore, K is uniformly integrable.

Remark A.16. A common application example of the above result is when φ(x) =
xp, for p > 1. Then if K is a subset of Lp with supX∈K E[X p] < ∞, we know K is

uniformly integrable.

The power of uniform integrability is given by the following generalization of

the dominated convergence theorem

Theorem A.17 (Vitali convergence theorem). Suppose {Xn}n∈N is a sequence of

integrable random variables which converge in probability to a random variable

X. Then the following are equivalent:

(i) Xn converges to X in L1 (that is, ‖Xn −X‖1 = E[|Xn −X∞|]→ 0),

(ii) the collection K = {Xn}n∈N is uniformly integrable.

In either case, the limit X is also integrable.

Proof. (i ⇒ ii) Suppose Xn → X in the norm of L1, so that X itself is in L1. For any

n, ‖Xn‖1 ≤ ‖Xn −X‖1 + ‖X‖1, and we see that the expectations E
[
|Xn|
]
= ‖Xn‖1

are uniformly bounded.

For any ε > 0, let N be such that

‖Xn −X‖1 < ε/3

for all n ≥ N. For any n ≥ N and any set A ∈ F, this implies

E[|Xn|1A]< E[|X |IA]+‖Xn −X‖1 < E[|X |1A]+ ε/3.

For any n < N and any set A ∈ F,

E[|Xn|1A]≤ E[|X |1A]+E[|Xn −XN |1A]+‖XN −X‖1

< E[|X |1A]+E[|Xn −XN |1A]+ ε/3

As X is integrable, we can find a δ∞ > 0 such that E[|X |1A] < ε/3 whenever

P(A) ≤ δ∞. Similarly, for each n ≤ N we can find a δn > 0 such that E[|Xn −
XN |1A] < ε/3 whenever P(A) ≤ δn. Let δ = δ∞ ∧ minn≤N δn. Then, whenever
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P(A) < δ , we have E[|Xn|1A] < ε . By our proposition, this shows that {Xn}n∈N is

uniformly integrable.

(ii ⇒ i) Conversely, suppose the set {Xn}n∈N is uniformly integrable. Then the

set of expectations E[|Xn|] is bounded and so, by Fatou’s inequality applied to an

almost surely converging subsequence,

E[|X |] = E[lim
n
|Xn|]≤ liminf

n
E[|Xn|]< ∞.

Now, writing

Xc = 1{|X |≥c}X , Xc = X −Xc = 1{|X |<c}X

we have

‖Xn −X‖1 ≤ ‖(Xn)
c −Xc‖1 +‖(Xn)c‖1 +‖Xc‖1.

Fix ε > 0. Because the collection {Xn}n∈N is uniformly integrable, there exists

a number c > 0 such that ‖Xc‖1 < ε/3 and ‖(Xn)c‖1 < ε/3 for all n. We know that

Xc
n converges to Xc in probability and |Xc

n −Xc| ≤ 2c so by Lebesgue’s dominated

convergence theorem, limn ‖Xc
n −Xc‖1 = 0.

There is, therefore, an integer N such that ‖Xc
n −Xc‖1 ≤ ε/3 if n > N. Conse-

quently, if n > N, we have ‖Xn −X‖< ε , and Xn → X in L1. Because
∣
∣‖Xn‖1 −‖X‖1

∣
∣≤ ‖Xn −X‖1,

E
[
|Xn|
]

converges to E
[
|X |
]
.

Uniform integrability is particularly useful in martingale theory. An example

of this is the following result:

Lemma A.18. Let X be a supermartingale with respect to the filtration {Ft}t≥0.

Let sn be a nonincreasing sequence in [0,T ]. Then {Xsn
}n∈N is uniformly inte-

grable.

Proof. As E[Xsn
] is an increasing function of n, the limit α = limnE[Xsn

] exists. As

E[Xsn
] ≤ E[X0] for all n, α < ∞. For any ε > 0, there exists an integer k such that

α −E[Xsk
]< ε/2 and so, for all n ≥ k,

0 ≤ E[Xsn
]−E[Xsk

]≤ ε/2.

Consider any λ > 0 and suppose n ≥ k. Then

I(n,λ ) := E[1{|Xsn |>λ}|XSn
|]

= E[1{Xsn<−λ}(−XSn
)]+E[1{Xsn>λ}XSn

]

=−E[1{Xsn<−λ}XSn
]+E[Xsn

]−E[1{Xsn≤λ}Xsn
]

≤−E[1{Xsn<−λ}Xsn
]+E[XSk

]−E[1{Xsn≤λ}Xsn
]+ ε/2.

As Xsn
≥ E[Xsk

|Fsn
], we have that

E[1{Xsn≤λ}Xsn
]+E[1{Xsn<−λ}Xsn

]

≥ E[1{Xsn≤λ}XSk
]+E[1{Xsn<−λ}Xsk

]
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and so, by rearrangement,

I(n,λ )≤ E[1{|Xsn |>λ}|Xsk
|]+ ε/2.

By Jensen’s inequality, we also have that

E
[
|Xsn

|
]
= E[Xsn

]+2E[X−
sn
]≤ α +2E[X−

s0
] =: β

and by Markov’s inequality,

P(|Xsn
|> λ )≤ E

[
|Xsn

|
]

λ
≤ β

λ
.

By absolute continuity of the measure ν(A) = E[1A|Xsk
|] with respect to P, we

know that there exists a λ0 such that

E[1{|Xsn |>λ}|Xsk
|]≤ ε/2

for all λ ≥ λ0, n ≥ k. That is, I(n,k) ≤ ε for all λ ≥ λ0, n ≥ k. For n < k, there

exists a λ1 such that I(n,k)≤ ε whenever n < k, λ ≥ λ1, and so if λ ≥ λ0 ∨λ1, we

observe the requirement for uniform integrbaility.

Remark A.19. Given the optional stopping theorem, you can easily check the

above works for a nonincreasing sequence of stopping times also.

A.6 Information and independence.

Information obtained by observations of the outcome of a random experiment is

represented by a sub-σ -algebra D of the collection of events F . If D ∈ D , then

the oberver “knows” whether or not the outcome is in D.

An S-valued random variable Y is independent of a σ -algebra D if

P({Y ∈ B}∩D) = P{Y ∈ B}P(D),∀B ∈ B(S),D ∈ D .

Two σ -algebras D1,D2 are independent if

P(D1 ∩D2) = P(D1)P(D2), ∀D1 ∈ D1,D2 ∈ D2.

Random variables X and Y are independent if σ(X) and σ(Y ) are independent, that

is, if

P({X ∈ B1}∩{Y ∈ B2}) = P{X ∈ B1}P{Y ∈ B2}.
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A.7 Conditional expectation.

Interpretation of conditional expectation in L2.

Problem: Approximate X ∈ L2 using information represented by D such that the

mean square error is minimized, i.e., find the D-measurable random variable Y that

minimizes E[(X −Y )2].

Solution: Suppose Y is a minimizer. For any ε 6= 0 and any D-measurable random

variable Z ∈ L2

E[|X −Y |2]≤ E[|X −Y − εZ|2] = E[|X −Y |2]−2εE[Z(X −Y )]+ ε2E[Z2].

Hence 2εE[Z(X −Y )]≤ ε2E[Z2]. Since ε is arbitrary, E[Z(X −Y )] = 0 and hence

E[ZX ] = E[ZY ] (48)

for every D-measurable Z with E[Z2]< ∞. �

With (48) in mind:

Definition A.20. For an integrable random variable X, the conditional expectation

of X, denoted E[X |D ], is the unique (up to changes on events of probability zero)

random variable Y satisfying

A) Y is D-measurable.

B)
∫

D XdP =
∫

DY dP for all D ∈ D .

Note that Condition B is a special case of (48) with Z = ID (where ID denotes

the indicator function for the event D) and that Condition B implies that (48) holds

for all bounded D-measurable random variables. Existence of conditional expec-

tations is a consequence of the Radon–Nikodym theorem.

Lemma A.21 (Conditional Jensen Inequality). Suppose φ is a convex map of R

into R and suppose X is an integrable random variable such that φ(X) is inte-

grable. Then

φ
(
E[X |D ]

)
≤ E[φ(X)|D ] a.s.

Proof. As φ is convex, it is the upper envelope of a countable family of affine

functions

λn(x) = αnx+βn, x ∈ R, n ∈ N,

that is, φ(x) = supn{λn(x)}. Note that this implies φ is Borel measurable. The

random variables λn(X) are integrable and

λn(E[X |D ]) = E[λn(X)|D ]≤ E[φ(X)|D ] a.s.

Taking the supremum with respect to n, the result follows.
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Lemma A.22 (Continuity of conditional expectation). For any σ -algebra D , the

conditional expectation E[·|D ] is continuous in L1, that is, if Xn → X in L1, then

E[Xn|D ]→ E[X |D ] in L1.

Proof. By Jensen,

E

[∣
∣
∣E[Xn|D ]−E[X |D ]

∣
∣
∣

]

= E

[∣
∣
∣E[Xn −X |D ]

∣
∣
∣

]

≤ E

[

E
[
|Xn −X |

∣
∣D
]]

= E[|Xn −X |]→ 0.

B Some useful measure theoretic results

B.1 Daniell–Kolmogorov Extension Theorem

*NOT EXAMINABLE*

Definition B.1. Let T= [0,∞] or [0,∞[. Then (Rd)T denotes the space of real func-

tions x : T→ Rd . The ‘cylinder topology’ on (Rd)T is given by finite intersections

of sets of the form {xt ∈ B}, where t ∈ T and B is an open set in Rd . This in turn

defines the Borel cylinder σ -algebra, denoted B((Rd)T).

We write B((Rd)∞) for the Borel σ -algebra on sequences in Rd , which is given

by the product ⊗n∈NB(Rd).

Lemma B.2. A set A ∈ B((Rd)T) if and only if there are a countable collection of

points t1, t2, ... and a Borel set B ∈ B((Rd)∞) with

A = {x : (xt1 ,xt2 , ...) ∈ B}.

A set of this form where the collection of points t1, t2... is finite is called a ‘cylinder

set’.

Proof. Exercise (monotone class argument).

Lemma B.3. A set A ∈ B(Rd) is regular, that is, for every finite measure µ on

(Rd ,B(Rd)) and every ε > 0 we can find a compact set C and an open set B such

that C ⊆ A ⊆ B and µ(B\C)< ε .

Proof. We use a monotone class argument. The result is easy for a set of the

form A =
(
]a1,b1]× ...×]an,bn]

)
∩Rd (where ai,bi = ∞ is permitted). These sets

form an algebra generating B(Rd) Now suppose {An}n∈N is a sequence of regular

sets with associated {Bn}n∈N,{Cn}n∈N such that µ(Bn \Cn)≤ ε2−n. If {An}n∈N is

increasing, then B = ∪nBn is an open set containing ∪nAn. As the measure is finite,

we know µ
(
B\ (∪m≤nBm)

)
↓ 0, and so for any n

µ
(
B\ (∪m≤nCm)

)
≤ µ

(
B\ (∪m≤nBm)

)
+ ∑

m≤n

µ(Bm \Cm)

≤ µ
(
B\ (∪m≤nBm)

)
+ ε
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which can be made arbitrarily small. As ∪m≤nCm is compact for any finite m, we

see that ∪nAn is regular. Conversely, if An is a decreasing sequence, then we see

that C = ∩nCn is a compact contained within ∩nAn. Again, by finiteness of µ we

have µ(Cn \C) ↓ 0. For any n

µ
(
(∩m≤nBm)\C

)
≤ µ(Bn \Cn)+µ(Cn \C)≤ ε2−n +µ(Cn \C).

As this can also be made arbitrarily small and ∩m≤nBm is open for finite m, we see

that ∩nAn is regular. Hence the regular sets form a monotone class, and the result

holds for all Borel measurable sets.

Theorem B.4 (Daniell–Kolmogorov Extension Theorem). Let {Pt} be a consis-

tent family of probability measures, where PT is defined for all finite sets t ⊆ T.

Then there is a unique probability measure P on ((Rd)T,B((Rd)T)) such that

P(πt(B)) = Pt(B) for all B ∈ B((Rd)t), where πt is the projection πt(B) = {x ∈
(Rd)T : (xt1 ,xt2 , ...,xtN ) ∈ B}.

Proof. Let A denote the subalgebra of B(RT) given by sets of the form

{x ∈ (Rd)T : (xt1 ,xt2 , ...,xtn) ∈ B,B ∈ B((Rd)n)}

for finite sequences {t1, t2, ..., tn}. Note that, as we restrict to finite sequences, A

is an algebra, but not a σ -algebra. We can define a measure P on the algebra A by

P(πT (B)) = PT (B) for all B ∈ B((Rd)T ).
We need to show that P is countably additive. It is enough to show that

limnP(An) = 0 for {An}n∈N any nonincreasing sequence of sets in A with ∩nAn =
/0. As the sequence {An}n∈N is nonincreasing, we know that P(An) = P(An \
An+1)+P(An+1) ≥ P(An+1), so the limit limnP(An) exists, and is within [0,1] by

construction.

Suppose that limnP(An) = ε > 0. As An ∈ A , we know that there exists a

sequence t1, t2, ... such that we can write

An = {x ∈ (Rd)T : (xt1 ,xt2 , ...,xtk(n)) ∈ Bn,Bn ∈ B((Rd)k(n))}

for some function k : N→ N. By Lemma B.3, we can find compact sets Cn ⊆ Bn

such that the corresponding events

Dn =
{

x ∈ (Rd)T : (xt1 ,xt2 , ...,xtk(n)) ∈Cn

}
⊆ An

satisfy P(An \Dn)≥ ε2−n. Taking an intersection, we see that

∩i≤nDi =
{

x ∈ (Rd)T : (xt1 , ...,xtk(n)) ∈ C̃n := ∩i≤n(Ci × (Rd)(tk(n)−tk(i)))
}
.

Therefore,

P(∩i≤mDi) = P(Am)−P
(
Am \ (∩n≤mDn)

)
= P(Am)−P

(
∪n≤m (Am \Dn)

)

≥ P(Am)−P
(
∪n≤m (An \Dn)

)
≥ ε − ε ∑

n≤m

2−m > 0.
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Therefore, for each m, ∩i≤mDi is nonempty, and so C̃n is also nonempty. Take an

arbitrary cm = (c1
m,c

2
m, ...,c

k(m)
m ) ∈ C̃m. As the sets C̃m are nonincreasing, the se-

quence {(c1
m, ...,c

k(1)
m )}m∈N ⊂ (Rd)k(1) is within the compact set C̃1, and hence has

a convergent subsequence with limit (c1, ...,ck(1)). Similarly, taking subsequences,

the sequence {(c1
m, ...,c

k(2)
m )}m∈N ⊂ (Rd)k(2) is within the compact set C̃2, and so

we have a limit (c1, ...,ck(2)).
We therefore obtain a sequence (c1,c2, ...) with (c1,c2, ...,ck(n)) ∈ ∩i≤nC̃i for

every n. It follows that the event (∩∞
i=1{xti = ci}) ∈ Dn for every n, which implies

that ∩nDn is nonempty. This is a contradiction with the fact that ∩nDn ⊆∩nAn = /0.

Therefore, we must have limnP(An) = 0, and so P is countably additive.

By Carathéodory’s extension theorem we can now extend P uniquely to a mea-

sure on σ(A ), which is equal to B((Rd)T), by Lemma B.2.

B.2 Kolmogorov–Čentsov continuity criterion

*NOT EXAMINABLE*

Theorem B.5 (Kolmogorov–Čentsov continuity criterion). Let X be a measurable

process (valued in any Banach space) such that, for some positive α ,β ,c, for all

s < t,

E
[
‖Xt −Xs‖α

]
≤ c|t − s|1+β .

Then there exists a modification X̃ of X which is almost surely locally Hölder γ-

continuous for all γ ∈ ]0,β/α [. In particular, for each T , there exists a constant

k > 0 such that for all δ > 0,

P
(

sup
{s<t<T}

{‖X̃t − X̃s‖
|t − s|γ

}

> δ
)

≤ kδ−α .

Proof. Fix T = 1 for simplicity, the general result will hold by induction. Let Dn be

the dyadic rationals of the form Dn = {k2−n}n,k∈Z+ ⊂ [0,1[, and let ∆n = 2−n and

⌊t⌋n = max{s ∈ Dn : s ≤ t}, ⌈t⌉n = min{s ∈ Dn : s ≥ t}, as in Lévy’s construction

of Brownian motion. Then for t ∈ Dn, the assumption states that

E
[

sup
t∈Dn

|Xt+∆n
−Xt |α

]
≤ ∑

t∈Dn

E[|Xt+∆n
−Xt |α ]≤ c2n+1∆1+β

n = c21−nβ .

Define µn = supt∈Dn
|Xt+∆n

−Xt |.
For s, t ∈ ∪nDn, with s < t, the sequences {⌈s⌉n}n∈N, {⌊t⌋n}n∈N will equal s, t

respectively after at most finitely many steps. Then we can write

Xt −Xs =
(

X⌊t⌋m
+

∞

∑
i=m

(X⌊t⌋i+1
−X⌊t⌋i

)
)

−
(

X⌈s⌉m
+

∞

∑
i=m

(X⌈s⌉i+1
−X⌈s⌉i

)
)
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where all the sums are in fact finite. Therefore, as ⌊t⌋i+1 = ⌊t⌋i + ∆i+1 unless

⌊t⌋i = t,

‖Xt −Xs‖ ≤ ‖X⌊t⌋m
−X⌈s⌉m

‖+
∞

∑
i=m

‖X⌊t⌋i+1
−X⌊t⌋i

‖+
∞

∑
i=m

‖X⌈s⌉i+1
−X⌈s⌉i

‖

≤ ‖X⌊t⌋m
−X⌈s⌉m

‖+2
∞

∑
i=m+1

µi.

In particular, if |t − s| < 2−m, then ⌊t⌋m = ⌈s⌉m, and so ‖Xt −Xs‖ ≤ 2∑∞
i=m+1 µi.

From this, we see

Mγ := sup
{s,t∈∪nDn}

‖Xt −Xs‖
|t − s|γ ≤ sup

m,n∈Z+
m<n

sup
s,t∈Dn

|t−s|<2−m

‖X̃t − X̃s‖
|t − s|γ

≤ sup
m,n∈Z+

m<n

2∑∞
i=m+1 µi

2−γn
= sup

m∈Z+

{

21+γ(m+1)
∞

∑
i=m+1

µi

}

≤ 21+γ
∞

∑
i=1

2γiµi.

If α ≥ 1, by Minkowski’s inequality

E
[
|Mγ |α

]1/α ≤ 21+γ
∞

∑
i=1

2γiE
[
|µi|α

]1/α ≤ 21+γ
∞

∑
i=1

2γic1/α2(1−iβ )/α

= c1/α21+γ+1/α
∞

∑
i=1

2(γ−β/α)i =
c1/α21+γ+1/α

2(γ−β/α)−1
< ∞.

For α < 1, the same bound holds for E
[
|Mγ |α

]
.

Therefore, as Mγ is almost surely finite, for almost all ω , X is uniformly con-

tinuous on ∪nDn. Defining X̃t := limn X⌊t⌋n
, by Fatou’s inequality we see Xt = X̃t

almost surely, and

sup
{s<t<T}

‖X̃t − X̃s‖
|t − s|γ = Mγ ,

so X̃ is a uniformly continuous modification of X . Finally, by Markov’s inequality,

P(Mγ > δ )≤ E
[
|Mγ |α

]
δ−α . A Borel–Cantelli argument (with δ = 2k/α ) gives the

almost-sure Hölder continuity.

C A very short primer in functional analysis

We start with a brief recall of basic notions of functional analysis leading to Hilbert

spaces and identification of their dual.
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C.1 Normed vector spaces

We start with basics. A vector space V over R is a set endowed with two binary op-

erations: addition and multiplication by a scalar, which satisfy the natural axioms.

We focus the discussion on real scalars as this is relevant for us but most of what

follows applies to spaces over complex numbers (or more general fields).

Definition C.1. A norm ‖ · ‖ on a vector space V is a mapping from V to [0,∞)
such that

(i) for any a ∈ R, v ∈V , ‖av‖= |a|‖v‖ (absolute homogeneity);

(ii) for any x,y ∈V , ‖x+ y‖ ≤ ‖x‖+‖y‖ (triangle inequality);

(iii) ‖v‖= 0 if and only if v is the zero vector in V (separates points).

Note that a norm induces a metric on V through d(x,y) = ‖x− y‖ and hence a

topology on V . A norm is then a continuous function from V to R. The space of

continuous linear functions plays a special role:

Definition C.2. Given a normed vector space over reals (V,‖ · ‖V ), its dual V ′ is

the space of all continuous linear maps (functionals) from V to R. V ′ itself is a

vector space over R equipped with a norm

‖φ‖V ′ := sup
v∈V,‖v‖V≤1

|φ(v)|.

The classical examples of spaces to consider are spaces of sequences or of

functions. Let (S ,F,µ) be a measurable space endowed with a σ -finite measure.

Then for a real valued measurable function f on S we can consider

‖ f‖p :=

(∫

S

| f (x)|pµ(dx)

)1/p

and let L p(S ,F,µ) be the space of such functions for which ‖ f‖p < ∞. Observe

that ‖ · ‖p is not yet a norm on L p – indeed it fails to satisfy (iii) in Definition

C.1 since if f = 0 µ-a.e. but is not zero, e.g. f = 1A for a measurable A ∈ F with

µ(A) = 0, then still ‖ f‖p = 0. We then say that ‖ · ‖p is a semi-norm on L p.

To remedy this, we consider the space Lp(S ,F,µ) which is the quotient of L p

with respect to the equivalence relation f ∼ g iff f = g µ-a.e. Put differently, Lp is

the space of equivalence classes of functions equal µ-a.e. and which are integrable

with pth power. Then (Lp(S ,F,µ),‖ ·‖p) is a normed vector space for p ≥ 1. The

triangle inequality for ‖ · ‖p is simply the Minkowski inequality.

A more geometric notion of measuring the relation between vectors is given by

an inner product.

Definition C.3. Given a vector space V over R, a mapping 〈·, ·〉 : V ×V → R is

called an inner product if
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(i) it is bilinear and symmetric: 〈ax+bz,y〉= a〈x,y〉+b〈z,y〉 and 〈x,y〉= 〈y,x〉
for a,b ∈ R, x,y,z ∈V ;

(ii) for any x ∈V , 〈x,x〉 ≥ 0;

(iii) 〈x,x〉= 0 if and only if x is the zero vector in V .

This notion is very familiar on V = Rn where an inner product is given by

〈x,y〉= xTy =
n

∑
i=1

xiyi.

An inner product satisfies the Cauchy–Schwartz inequality

Proposition C.4. An inner product on a vector space satisfies

|〈x,y〉| ≤
√

〈x,x〉
√

〈y,y〉, x,y ∈V. (49)

Proof. Let ‖x‖ :=
√

〈x,x〉, x ∈ V . Fix x,y ∈ V and define a quadratic function

Q : R→ R by

Q(r) = ‖x+ ry‖2 = ‖y‖2r2 +2〈x,y〉r+‖x‖2, r ∈ R

which clearly is non-negative and hence its discriminant has to be non-positive i.e.

4|〈x,y〉|2 −4‖x‖2‖y‖2 ≤ 0 that is |〈x,y〉| ≤ ‖x‖‖y‖,

as required. We note also that equality holds if and only if the vectors x,y are

linearly dependent i.e. x = ry for some r ∈ R.

The above implies that ‖x‖ :=
√

〈x,x〉 is a norm on V . We say that the norm

is induced by an inner product. Among spaces Lp defined above only L2 has norm

which is induced by an inner product, namely by

〈 f ,g〉=
∫

S

f (x)g(x)µ(dx). (50)

C.2 Banach spaces

We first define Cauchy sequences which embody the idea of a converging sequence

when we do not know the limiting element.

Definition C.5. A sequence (xn) of elements in a normed vector space (X ,‖ · ‖)
is called a Cauchy sequence if for any ε > 0 there exists N ≥ 1 such that for all

n,m ≥ N we have ‖xn − xm‖ ≤ ε .

Definition C.6. A normed vector space (X ,‖ · ‖) is complete if every Cauchy se-

quence converges to an element x ∈ X. It is then called a Banach space. Further, if

the norm is induces by an inner product then (X ,‖ · ‖) is called a Hilbert space.
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Naturally, the Euclidean space Rd is a Banach space (and in fact a Hilbert

space) with the norm ‖x‖=
√

∑d
i=1 x2

i . This implies (reasoning for d = 1) that

Proposition C.7. If (X ,‖·‖X) is a normed vector space over R then its dual (X ′,‖·
‖X ′) in Definition C.2 is a Banach space.

In many cases it is interesting to build linear functionals satisfying certain ad-

ditional properties. This is often done using the Hahn–Banach theorem. It states

in particular that a continuous linear functional defined on a linear subspace Y of

X can be continuously extended to the whole of X without increasing its norm. A

version of this is also known as the separating hyperplane theorem since it allows

to separate two convex sets (one open) using an affine hyperplane.

An important step in studying continuous linear functionals on X is achieved

by describing the structure of X ′. We have

Proposition C.8. Let (S ,F,µ) be a measurable space with a σ -finite measure.

Then for any p ≥ 1, Lp(S ,F,µ) is a Banach space and for p > 1 its dual is

equivalent to (isometric to) the space Lq(S ,F,µ), where 1/p+1/q = 1.

In particular we see that L2 is its own dual. This means that any continuous

linear functional on L2 can be identified with an element in L2. This property

remains true for any Hilbert space:

Proposition C.9. Let (X ,‖ · ‖) be a Hilbert space with the norm induced by an

inner product, ‖x‖ =
√

〈x,x〉. If φ : X → R is a continuous linear map then there

exists an element xφ ∈ X such that

φ(y) = 〈x,y〉, ∀y ∈ X .

In particular, if φ : L2(S ,F,µ)→ R is a continuous linear map then there exists

an element fφ ∈ L2(S ,F,µ) such that

φ(g) =
∫

S

g(x) fφ (x)µ(dx), ∀g ∈ L2(S ,F,µ).

Note that the inner product 〈x,y〉, or the integral
∫

S
g(x) fφ (x)µ(dx), in the

above statement is well defined by (49)–(50).

On a (separable) Hilbert space, we can also state an infinite dimensional ana-

logue of the Pythagorean theorem. Recall that Rn is a Hilbert space with inner

product 〈x,y〉 = ∑n
i=1 xiyi. This uses the canonical basis in Rn but if we take any

orthonormal basis in Rn, say (ε1, . . . ,εn), then

x =
n

∑
i=1

〈x,εi〉εi and hence ‖x‖2 =
n

∑
i=1

〈x,εi〉2,

which is the Pythagorean theorem. The same reasoning gives 〈x,y〉=∑n
i=1〈x,εi〉〈y,εi〉.

The infinite dimensional version is known as the
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Proposition C.10 (Parseval’s identity). Let (X ,‖ · ‖) be a separable Hilbert space

with the norm induced by an inner product (x,y)→〈x,y〉 and let (εn : n ≥ 1) be an

orthonormal basis of X. Then for any x,y ∈ X

〈x,y〉= ∑
n≥1

〈x,εn〉〈y,εn〉, and in particular ‖x‖2 = ∑
n≥1

〈x,εn〉2.

Finally we state one more result, which is crucial for the construction of the

stochastic integral.

Proposition C.11. Suppose (X ,‖·‖X) and (Y,‖·‖Y ) are two Banach spaces, E ⊂X

is a dense vector subspace in X and I : E →Y is a linear isometry, i.e. a linear map

which preserves the norm, ‖I(x)‖Y = ‖x‖X for all x ∈ X. Then I may be extended

in an unique way to a linear isometry from X to Y .

Proof. Take x ∈ X and xn → x with xn ∈ E . Then, by the isometry property, (I(xn))
is Cauchy in Y since (xn) is Cauchy in X . It follows that it converges to some

element which we denote I(x). Further, if we have two sequences in E , (xn) and

(yn), both converging to x ∈ X and giving raise to potentially two elements I(x) and

I(x)′ then we can build a third sequence z2n = xn, z2n+1 = yn which also converges

to x and we see that I(zn) has to converge and the limit has to agree with both I(x)
and I(x)′, so that I(x) = I(x)′ is unique. It follows that we defined I(x)∈Y uniquely

for all x ∈ X . Further,

‖I(x)‖Y = lim
n
‖I(xn)‖Y = lim

n
‖xn‖X = ‖x‖X

so that I is norm-preserving. Finally, if x,y ∈ X then we can write them as limits

of sequences of elements in E , say (xn) and (yn) respectively. For any a,b ∈ R,

axn+byn ∈ E since E is a vector space, and then by the above and linearity of I on

E we have

I(ax+by) = lim
n

I(axn +byn) = lim
n

(

aI(xn)+bI(yn)
)

= aI(x)+bI(y),

so that I is linear on X as required.

The following theorem is fundamental to many approximations. A proof can

be found in the Lecture notes of B4.1 (Functional Analysis I)

Theorem C.12 (Stone–Weierstrass theorem). Let K ⊂ Rn be compact. Then the

space of polynomials is dense in C(K), i.e. for every f ∈ C(K) there exists a

sequence of polynomials {pn} so that pn → f uniformly on K.
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