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Example 1 (tensor fields)

Show that, if T is a rank (0, 2) tensor field, X , Y and Z are vector
fields, and a, b and c are scalar fields, then

T (aX + bY , cZ ) = acT (X ,Z ) + bcT (Y ,Z ).

Note that a, b and c don’t have to be constants – they are scalar
fields, and can vary from point to point in spacetime.

In index notation, this reads

Tab(aX a + bY a)cZb = acTabX
aZb + bcTabY

aZb,

so this question legitimises some manipulation which is natural in
index notation.
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Choose an arbitrary point p ∈M4. Then T
∣∣
p

is a rank (0, 2) tensor at p,

X
∣∣
p
, Y
∣∣
p

and Z
∣∣
p

are vectors at p and a
∣∣
p
, b
∣∣
p

and c
∣∣
p

are constants

(they are the values of the scalar fields a, b and c at the point p).
Hence we can calculate

T (aX + bY , cZ )
∣∣
p

= T
∣∣
p

(
a
∣∣
p
X
∣∣
p

+ b
∣∣
p
Y
∣∣
p
, c
∣∣
p
Z
∣∣
p

)

= a
∣∣
p
c
∣∣
p
T
∣∣
p

(
X
∣∣
p
,Z
∣∣
p

)
+ b
∣∣
p
c
∣∣
p
T
∣∣
p

(
Y
∣∣
p
,Z
∣∣
p

)
( by the linearity of T

∣∣
p
)

= (acT (X ,Z ) + bcT (Y ,Z ))
∣∣
p
.

Since p was arbitrary, this holds at all points, i.e.

T (aX + bY , cZ ) = acT (X ,Z ) + bcT (Y ,Z ).
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Example 2 (proper time along an accelerated
worldline)

In this question we treat the Earth as being at rest in a system of
inertial coordinates.

An astronaut begins at rest on the Earth, and plans to visit a
distant planet, which is at rest relative to the Earth a proper
distance D away. Her spaceship accelerates during the journey at a
constant rate α, i.e.

maba
aab = α2,

where a is the four-acceleration of the astronaut.

What is the path of the astronaut, in terms of inertial coordinates
centred on the Earth? How much time passes, from the
astronaut’s point of view, until she reaches her destination?
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We can choose coordinates (t, x , y , z), where the worldline of the
Earth is simply (t, 0, 0, 0), and the worldline of the distant planet is
given by (t,D, 0, 0). Then the worldline of the astronaut is

(t(τ), x(τ), 0, 0) .

Since τ is the proper time along the astronaut’s worldline, we have

−ṫ2 + ẋ2 = −1,

where ‘dots’ are derivatives w.r.t. τ . The acceleration of the
astronaut is

a =


ẗ
ẍ
0
0

 =


ẋ ẍ√
1+ẋ2

ẍ
0
0
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Since maba
aab = α2, we have

α2 =
ẍ2

1 + ẋ2
.

Moreover, ẋ ≥ 0. Solving this equation for ẋ(τ), we find that

ẋ = sinh(ατ + c),

for some constant c . But since ẋ(0) = 0, we have c = 0.
Integrating again, and using x(0) = 0, we find that

x(τ) =
1

α
(cosh(ατ)− 1) .

In view of ṫ =
√

1 + ẋ2, and t(0) = 0, we find that

t(τ) =
1

α
sinh(ατ)



Example 1 Example 2 Example 3 Example 4

If we like, we can write the path of the astronaut in terms of inertial
coordinates as (

t,
1

α

(√
α2t2 + 1− 1

)
, 0, 0

)
.

The time that passes for the astronaut is the proper time along her
worldline, i.e. τ . She reaches the distant planet when

τ =
1

α
cosh−1 (1 + αD) .

Note that, if αD � 1, then τ ∼ 1
α log(αD). So, no matter how large D

is, if α is sufficiently large, then the astronaut can reach the planet after
a “reasonable” proper time. On the other hand, when the she reaches
the planet,

t =

√
D2 + 2

D

α
,

so, no matter how large α is, it takes at least a time D to reach the
planet, as viewed from Earth.
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Example 3 (null curves which are not straight lines)

Give an example of a null curve in Minkowski space which is not a
straight line in inertial coordinates.
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Consider the curve given, in inertial coordinates, by

(t, x , y , z) = (λ, sinλ, cosλ, 0).

Then the tangent vector to this curve (parametrised by λ) is

v =


1

cosλ
− sinλ

0

 ,

and we can compute its Minkowski norm mabv
avb, which is

−1 + cos2 λ+ sin2 λ = 0. Hence this curve is null (but it is clealy
not a straight line!).
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Example 4 (Ladders and barns)

This is a classic thought experiment. We’ll approach the solution more
geometrically, rather than just through Lorentz transformations.

I stand outside a barn and watch Bob runs very quickly (at some
significant fraction of the speed of light!) at a constant speed in a
straight line through the barn, carrying a ladder. The barn has doors at
both the front and back, and two of my friends stand near the doors
ready to close them.

The proper length of the ladder is `, while the proper length of the barn
is b, with b < `. Show that, if Bob runs fast enough, my friends can
both (temporarily) close the doors with Bob and the ladder inside. They
then open the doors again so that Bob and the ladder can pass through
the barn.

What happens from Bob’s point of view?
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We can work in inertial coordinates where the barn is at rest –
these will correspond to “what I see”. In these coordinates, the
worldline corresponding to the front of the barn is at
(t, x , y , z) = (λ, 0, 0, 0), while that correponding to the back of the
barn is at (λ, b, 0, 0).

The worldline of the front of the ladder is (λ, vλ, 0, 0), where v is
the relative velocity of the Bob (we can choose the coordinates so
that the ladder enters the barn at t = λ = 0), and the back of the
ladder follows the worldline (λ, vλ− a, 0, 0) for some constant a
(which is not `!).
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If a 6= `, what is the constant a, and how do we find it? One way
is to use a Lorentz transformation to switch to the rest frame of
the ladder – if we use inertial coordinates where the ladder is at
rest, then the proper length of the ladder will be the same as its
coordinate length.

An alternative approach – and the one we will use – is to stay in
our chosen coordinate system, and to calculate the proper length
of the curve which joins the front of the ladder to the back of the
ladder which is orthogonal (in the Minkowski sense) to the
worldlines of the points making up the ladder.

There are many equivalent definitions of the length of a rigid body:
a third one is half the proper time along the worldline at one end
of the rigid body between the emission and reception of a light
signal which bounces off the other end of the body.
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The worldlines of the points making up the ladder are given by
(t, x , y , z) = (λ, vλ− c, 0, 0), where c ∈ [0, a]: their tangent
vectors are given by 

1
v
0
0

 .

Hence, a spacelike straight line orthogonal to these worldline is
given by (−vλ,−λ, 0, 0). This curve meets the front of the ladder
at λ = 0, and the back of the ladder at λ = a

1−v2 .
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We want to calculate the proper length of the curve (−vλ,−λ, 0, 0), with
λ ∈ [0, a

1−v2 ]. λ is not the proper distance along this curve: its tangent

vector X has norm m(X ,X ) = 1− v2. Parametrising this curve by proper
length s instead of λ, we find that

s = λ
√

1− v2.

Hence when λ = a
1−v2 , s = a√

1−v2
, and this is the proper length of the

ladder, `. In other words,

a = `
√

1− v2.

Hence we see that, if

v ≥
√

1− b2

`2
,

then, from my point of view, the entire ladder can fit in the barn.
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Both doors of the barn can be closed (with the ladder inside) for

`

v

√
1− v2 ≤ t ≤ b

v
.

To find out how things look from Bob’s point of view, we can do a
Lorentz transformation: coordinates in which Bob is at rest are given by
(t ′, x ′, y ′, z ′), where

(t ′, x ′, y ′, z ′) = (γt − γvx ,−γvt + γx , y , z),

with γ = 1√
1−v2

.

In Bob’s coordinates, the front of the barn follows the worldline
(λ,−vλ, 0, 0), and the back of the barn follows the worldline
(λ,−vλ+ b

√
1− v2, 0, 0). The front door is closed for `

v ≤ t ′ ≤ bγ
v ,

while the back door is closed for `
v − γvb ≤ t ′ ≤ bγ

v − γvb: there is
always at least one door open, and the entire ladder is never all in the
barn at one time!
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On the left we see the situation from the point of view of an inertial
observer at rest relative to the barn. There is a period of time where, for
this observer, the entire ladder appears to be within the barn. On the right
we see things from Bob’s point of view, in which the ladder is at rest: now,
the ladder never appears to fit within the barn.
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