C7.5 Lecture 5: Differential geometry 1 Manifolds and coordinate charts

Joe Keir

Joseph.Keir@maths.ox.ac.uk

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □ > ○へ⊙

We have two goals in investigating curved spacetimes:

- We need to reconstruct all of the mathematical tools we needed to do physics in Minkowski spacetime: curves, tangent vectors, proper time and distance, tensor fields etc. Importantly, we also want to be able to do calculus using these objects (vector calculus etc.) – this will turn out to be our hardest job.
- We need to understand the new structure that we get in a curved spacetime – namely, curvature – and relate this, somehow, to gravity.

Manifolds and coordinate charts

The basic object in differential geometry – and our model for a curved spacetime – is a *manifold*. A manifold \mathcal{M} is a topological space¹ where sufficiently small open sets "look like" open sets in \mathbb{R}^n .

We make this precise as follows: $\forall p \in \mathcal{M}, \exists$ an open neighbourhood U of p and a map $\phi_U : U \to \mathbb{R}^n$.

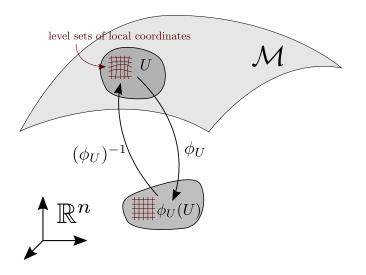
- ϕ_U is a chart or coordinate chart.
- U is a coordinate patch.
- ϕ_U is a bijection between U and $\phi_U(U)$.
- Both ϕ_U and ϕ_U^{-1} are continuous.
- $n \in \mathbb{N}$ is the dimension of the manifold.

¹It is also required to be *second countable* and *Hausdorf*, but these technical details will not concern us.

We can use the chart ϕ_U to define *local coordinates* x^a in the set U. These are defined as the 'pull-back' of the standard coordinates on \mathbb{R}^n : in a slight abuse of notation, for each $a \in \{0, 1, \ldots, n-1\}$ we set

$$x^{a}(p) = x^{a}(\phi_{U}(p)),$$

where, on the right hand side, $x^a(\phi_U(p))$ is just the value of the standard coordinate x^a in \mathbb{R}^n at the point $\phi_U(p)$.



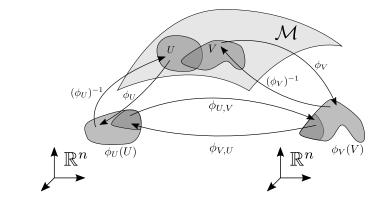
A manifold \mathcal{M} , with a coordinate patch U and a chart ϕ_U . Local coordinates are defined in the patch ϕ_U by using the usual coordinates on \mathbb{R}^n and the chart ϕ_U .

Generally, we need more than one chart to cover the manifold \mathcal{M} . An *atlas* is a collection of charts covering the entire manifold. It can happen that two charts overlap - that is, we can have charts ϕ_U and ϕ_V with $U \cap V \neq \emptyset$. On the overlap, we define *transition functions*:

$$\phi_{U,V} : \mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto \phi_V \circ (\phi_U^{-1})(x)$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

(see figure 2).



Here the coordinate patches U and V overlap, allowing us to define the transition functions $\phi_{U,V}$ and $\phi_{V,U}$. For a smooth manifold, these transition functions are smooth.

The transition functions are maps from some open set of \mathbb{R}^n to another open set of \mathbb{R}^n .

Hence we can make sense of (for example) the differentiability of these maps. We will always work with *smooth manifolds*, meaning that we always use atlases in which all transition functions are C^{∞} .

Some examples of manifolds:

- 1 any (finite dimensional) vector space,
- 2 the n-sphere \mathbb{S}^n ,
- 3 a cone without the vertex point,
- 4 the torus $\mathbb{S}\times\mathbb{S},$ etc.