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Curves and tangent vectors

As before, we define a curve

γ : [0, 1] (or R (or R+)→M.

What about a tangent vector? Our manifold does not have an
affine space structure, nor are there special sets of inertial
coordinates we can use.

We can still differentiate functions along a curve: given
f :M→ R, we have

d

dλ
f ◦ γ := V (f ),

where we use this equation to define the “vector” V . It is an
operator which acts on scalar fields f via the above formula.



Vectors satisfy the following two important properties: for
constants a, b ∈ R and functions f , g :M→ R

1 Linearity:
V (af + bg) = aV (f ) + bV (g).

2 The Leibniz rule:

V (fg) = gV (f ) + fV (g).



Tangent vectors in local coordinates

In terms of local coordinates xa, we can set

V (f )
∣∣
p

= V (f ◦ φ−1
U ◦ φU)

∣∣
p

= V
(
f̃ (xa)

) ∣∣
p
,

where f̃ = f ◦ φ−1
U . Note that f̃ : Rn ⊃ U → R, and xa = φU(p).

Using the chain rule we have

V (f )
∣∣
p

= V (xa)
∣∣
p

∂ f̃

∂xa

∣∣∣∣
xa(p)

= V a∂a f̃ .

Since this formula holds in all local coordinates, we write V = V µ∂µ. By

a common abuse of notation, people often write f for f̃ = f ◦ φ−1
U ,

although these are two different objects: f is a function on the manifold,
while f̃ is a function of the local coordinates xa (of course, they take the
same value at corresponding points!).



Vectors and the tangent space

A vector at a point p ∈M is the tangent vector to some curve1

through p, at the point p.

The tangent space at p, Tp(M) is the set of all vectors at p.

1Strictly speaking we need to talk about equivalence classes, because there
are multiple curves with the same tangent vector. Two curves γ and γ′, with
tangent vectors V and V ′ at p are said to define the same vector if
V (f ) = V ′(f ) for all f .



Tp(M) is a vector space with the same dimension as the
dimension of the manifold.

Given some local coordinates xa, we can define the vectors
∂a = ∂

∂xa as the vectors tangent to the curves along which xa

changes while xb, b 6= a remain constant, parametrised by xa (see
figure 1). Such vector fields are sometimes called coordinate
induced vector fields.



The coordinate induced vector field ∂
∂x points in the direction where x

changes while all the other coordinates (here, the coordinate y) remain
the same. Similarly, ∂

∂y points in the direction where y changes while x
remains constant.



Covectors and tensors

The cotangent space T ∗p (M) is the dual space of the vector space
Tp(M), i.e. it consists of all linear maps (called covectors) from
the tangent space to R.

A tensor of rank (n,m) is an element of (Tp(M))n ×
(
T ∗p (M)

)m
.

Equivalently, it is a multi-linear map from (Tp(M))m ×
(
T ∗p (M)

)n
to R.



Tensor components and their transformation laws

Given local coordinates xa, the components of the vector X are

X a := X (xa).

By the chain rule, for any scalar function f :M→ R we have

X (f ) = X (f ◦ φ−1
U ◦ φU) = X (xa)

∂

∂xa
(f ◦ φ−1

U ) = X a ∂

∂xa
(f ◦ φ−1

U ).

Note that φU(p) =
(
x0(p), . . . xn−1(p)

)
, and f ◦ φ−1

U : Rn → R.

In particular, the components of the vector ∂b are

(∂b)a = ∂b(xa) = δab,

so

(∂b)(f ) =
∂

∂xb
(f ◦ φ−1

U ).



Now suppose we change coordinates in a neighbourhood of the
point p, from the coordinates xa to coordinates ya

′
(xa). Then the

new components of the vector X are, using the chain rule,

(X ′)a
′

= X (ya
′
) =

∂ya
′

∂xa
X (xa) =

∂ya
′

∂xa
X a.

This is the transformation law for vectors.



Let η be a covector. Then the components of η are defined to be

ηa := η(∂a).

Note that
η(X ) = η(X a∂a) = X aηa

Since this holds in any coordinate system, we write
η(X ) = Xµηµ = ηµX

µ.



Under a change of coordinates as before, we have

η(X ) = ηaX
a = (η′)a′(X

′)a
′

= (η′)a′
∂ya

′

∂xa
X a,

so we must have

∂ya
′

∂xa
(η′)a′ = ηa

⇒ (η′)a′ =
∂xa

∂ya′
ηa

using the inverse function theorem. This is the covector
transformation law.



Now, under a change of coordinates as above, we have

η(X ) = ηaX
a = (η′)a′X

a′ = (η′)a′
∂ya

′

∂xa
X a

so we must have

∂ya
′

∂xa
(η′)a′ = ηa

⇒ (η′)a′ =
∂xa

∂ya′
ηa

using the inverse function theorem. This is the covector
transformation law.



More general tensors transform in the “obvious” way – as if they
were the product of a bunch of vector and covector fields :

(T ′)
a′1a

′
2...a

′
n

b′1b
′
2...b

′
m

=
∂ya

′
1

∂xa1
∂ya

′
2

∂xa2
. . .

∂ya
′
n

∂xan
∂xb1

∂yb
′
1

∂xb2

∂yb
′
2
. . .

∂xbm

∂yb′m
T a1a2...an

b1b2...bm
.


