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Tensor fields

A tensor field is an assignment of a tensor to all points in
spacetime (or, occasionally, some open subset of points).

We always work with smooth (C°°) tensor fields. To check the
differentiability of a tensor field we can simply examine its
components in a chart. Since the transition functions are smooth,
this is a coordinate-independent notion in a smooth manifold.



We can also consider a rank (n, m) tensor field F as a linear
operator at each point p,

FI o (TR M) x (Tp(M))" = R.

b
This means that it is C*°-linear in its arguments. For example, a
covector field 7 is a function from vector fields to the reals,
satisfying
n(aX + bY) = an(X) + bn(Y)

for all scalar fields a, b and all vector fields X, Y.

Note that a and b are allowed to vary (smoothly) from point to
point — they do not have to be constant!



The tangent bundle T (M) is the union of all of the tangent
spaces of the manifold:

TM)= | To(M)
pEM

An element of the tangent bundle is a pair (p, X), where p is a
point in the manifold and X is a vector at p. In an exactly
analogous way, we can define the cotangent bundle as the union of
all the cotangent spaces.

Why is it a “bundle”, and not, for example, a vector space? There is no way to
add two elements of the tangent bundle (p, X) and (g, Y), unless p = q.
Although vectors at p and g are both elements of n-dimensional vector spaces
(To(M) and T4(M) respectively), there is nothing “connecting” the different
tangent spaces at different points — there is no vector in one tangent space

which “corresponds” to a given vector in another tangent space.



Examples of tensor fields

In a coordinate patch U, we can define the vector fields 0, = %
as above.

Given a smooth function f : M — R (a scalar field), we can define
the covector field df by its action on an arbitrary vector field X:

Since, for all p, this defines a linear map from T,(M) — R, this
defines a covector field (easy to check that
df(aX + bY) = adf(X) + bdf(Y)).



Coordinate induced covector fields

In a coordinate patch U/, the coordinate functions x? are
themselves smooth functions. Hence we can construct the
coordinate differentials: the covector fields dx?.

These covectors form a basis for the cotangent space at any point,
which is in fact the dual basis to the basis of coordinate induced

vector fields 0,, i.e.
dx?(0p) = 9.

We can also expand any covector in terms of this basis (exercise):

n = nadx? where 1, = 1(0,).



As before, we can define the Kronecker delta, which is a (1,1)
tensor field, defined by its action on an arbitrary vector field X and
covector field n:

o(X,m) = n(X)
This defines a linear map from T,(M) x Tj(M) — R, so d is a
tensor field.



Forming new tensors out of old

There are many ways to form new tensors out of old ones.

Given two vector fields X and Y, we can form their product XY/,
which is a rank (2, 0) tensor field with components
(XY)?® = X2Y" in any coordinate system. Alternatively, we can
define it by its action on a pair of covectors eta, u:

(XY)(n, 1) = n(X)u(Y).



Given a (1,1) tensor field T, we can form a scalar field by
contracting its indices: we can form the scalar field T*,, whose
value in any coordinate system is T2,.

For a coordinate-free definition of T*, at some point p, we
introduce a basis (e,) for T,(M), and the dual basis for T;(M),
(f?), where f¥(ep) = 3. Then

ThL =) T(fe?).

Check that these definitions are independent of the choice of local
coordinates (for T2,)) or of the basis e, (in the coordinate
independent definition).



If T, is a rank (0,2) tensor field, then we can define its
symmetric and antisymmetric parts, which are the tensors T(,,)
and Ty,,) with components

(Tab + Tba)

(Tab - Tba) .
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There are many, many other ways to combine tensors, contract
indices etc. etc. to form new tensors.



The metric tensor

Finally we introduce the metric tensor g. Manifolds equipped with
a metric tensor are called Lorentzian manifolds (if the metric has
signature (—, +, +,+). If the metric had signature (+,+, +, +),
then we would call it a Riemannian manifold instead).

The metric is a symmetric, rank (0, 2) tensor field. It generalises
the Minkowski metric m to a manifold.



For a vector field X, we define the covector field X” by
X"(Y) :=g(X,Y) for all vector fields Y

The metric is non-degenerate: X* = 0 if and only if X = 0. In
components,
(Xb)a = gabXb = Xa~



The metric g has signature (—, +, +,+). This means that, in any
coordinate system, at any point in the manifold, the matrix

8ab = &(0a,0p) has signature (—, +, +, +) (i.e. one negative and
three positive eigenvalues). This is also a basis-independent notion.



The metric g plays the same role as the Minkowski metric m did in
special relativity:
o A nonzero vector X is timelike if g(X, X) < 0, spacelike if
g(X,X) >0 and null if g(X,X) =0.
o Curves are timelike/spacelike/null if their tangent vector is
everywhere timelike/spacelike/null.

o On a timelike curve we define the proper time as the
parameter such that the tangent vector V satisfies
g(V,V) = —1. Similarly, on a spacelike curve the proper
distance is defined so that g(V, V) = 1.



Notation for the metric

In terms of local coordinates x?, we write
g = gapdx?dx? = ds?

Often we take for granted that the metric is symmetric, and so for brevity
we write a non-symmetric expression, with the understanding that the
metric is found by symmetrising. For example, we might write

g = dxtdx?,
which should be understood as
1 1
g = §d><1dx2 + de2dxl,
. _ 1
I.€. 812 = 821 = 3.

The quantity ds?, which is really just the metric tensor, is sometimes
called the line element.



We also define the inverse metric g1, a rank (2,0) tensor defined
by

g1 (X", n) =n(X)
for all vector fields X and covector fields 7. In components, this
reads

(g71)"Xams = (87 1) 8ac X “nb = X2 = 52X 1.

Since this holds for all X and 7, it follows that (g7 1) g,. = 62,
i.e. the matrix (g~1)?” is the inverse of the matrix gap.



We can use the inverse metric to raise indices: for a covector field
n, define the vector field nf by

gt Y) =n(Y)

for all vector fields Y. In components

(") = (g7 ") n =n°



A common notation is to avoid including the inverse sign when
writing the inverse metric components, i.e.

(g—l)ab — gab'

This is actually consistent with our notation: raising both indices
on the metric:

gab — (g—l)aC(g—l)bdgcd — (g—l)ac(sg — (g—l)ab‘



