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Tensor fields

A tensor field is an assignment of a tensor to all points in
spacetime (or, occasionally, some open subset of points).

We always work with smooth (C∞) tensor fields. To check the
differentiability of a tensor field we can simply examine its
components in a chart. Since the transition functions are smooth,
this is a coordinate-independent notion in a smooth manifold.



We can also consider a rank (n,m) tensor field F as a linear
operator at each point p,

F
∣∣
p

:
(
T ∗p (M)

)m × (Tp(M))n → R.

This means that it is C∞-linear in its arguments. For example, a
covector field η is a function from vector fields to the reals,
satisfying

η(aX + bY ) = aη(X ) + bη(Y )

for all scalar fields a, b and all vector fields X , Y .

Note that a and b are allowed to vary (smoothly) from point to
point – they do not have to be constant!



The tangent bundle T (M) is the union of all of the tangent
spaces of the manifold:

T (M) =
⋃

p∈M
Tp(M)

An element of the tangent bundle is a pair (p,X ), where p is a
point in the manifold and X is a vector at p. In an exactly
analogous way, we can define the cotangent bundle as the union of
all the cotangent spaces.
Why is it a “bundle”, and not, for example, a vector space? There is no way to

add two elements of the tangent bundle (p,X ) and (q,Y ), unless p = q.

Although vectors at p and q are both elements of n-dimensional vector spaces

(Tp(M) and Tq(M) respectively), there is nothing “connecting” the different

tangent spaces at different points – there is no vector in one tangent space

which “corresponds” to a given vector in another tangent space.



Examples of tensor fields

In a coordinate patch U, we can define the vector fields ∂a = ∂
∂xa

as above.

Given a smooth function f :M→ R (a scalar field), we can define
the covector field df by its action on an arbitrary vector field X :

df (X ) := X (f ).

Since, for all p, this defines a linear map from Tp(M)→ R, this
defines a covector field (easy to check that
df (aX + bY ) = adf (X ) + bdf (Y )).



Coordinate induced covector fields

In a coordinate patch U , the coordinate functions xa are
themselves smooth functions. Hence we can construct the
coordinate differentials: the covector fields dxa.

These covectors form a basis for the cotangent space at any point,
which is in fact the dual basis to the basis of coordinate induced
vector fields ∂a, i.e.

dxa(∂b) = δab.

We can also expand any covector in terms of this basis (exercise):

η = ηadx
a where ηa = η(∂a).



As before, we can define the Kronecker delta, which is a (1, 1)
tensor field, defined by its action on an arbitrary vector field X and
covector field η:

δ(X , η) = η(X )

This defines a linear map from Tp(M)× T ∗p (M)→ R, so δ is a
tensor field.



Forming new tensors out of old

There are many ways to form new tensors out of old ones.

Given two vector fields X and Y , we can form their product XY ,
which is a rank (2, 0) tensor field with components
(XY )ab = X aY b in any coordinate system. Alternatively, we can
define it by its action on a pair of covectors eta, µ:

(XY )(η, µ) = η(X )µ(Y ).



Given a (1, 1) tensor field T , we can form a scalar field by
contracting its indices: we can form the scalar field Tµ

µ, whose
value in any coordinate system is T a

a.

For a coordinate-free definition of Tµ
µ at some point p, we

introduce a basis (ea) for Tp(M), and the dual basis for T ∗p (M),
(f a), where f a(eb) = δab. Then

Tµ
µ

∣∣
p

=
∑

T (fa, e
a).

Check that these definitions are independent of the choice of local
coordinates (for T a

a)) or of the basis ea (in the coordinate
independent definition).



If Tµν is a rank (0, 2) tensor field, then we can define its
symmetric and antisymmetric parts, which are the tensors T(µν)

and T[µν] with components

T(ab) :=
1

2
(Tab + Tba)

T[ab] :=
1

2
(Tab − Tba) .

There are many, many other ways to combine tensors, contract
indices etc. etc. to form new tensors.



The metric tensor

Finally we introduce the metric tensor g . Manifolds equipped with
a metric tensor are called Lorentzian manifolds (if the metric has
signature (−,+,+,+). If the metric had signature (+,+,+,+),
then we would call it a Riemannian manifold instead).

The metric is a symmetric, rank (0, 2) tensor field. It generalises
the Minkowski metric m to a manifold.



For a vector field X , we define the covector field X [ by

X [(Y ) := g(X ,Y ) for all vector fields Y

The metric is non-degenerate: X [ = 0 if and only if X = 0. In
components,

(X [)a = gabX
b = Xa.



The metric g has signature (−,+,+,+). This means that, in any
coordinate system, at any point in the manifold, the matrix
gab = g(∂a, ∂b) has signature (−,+,+,+) (i.e. one negative and
three positive eigenvalues). This is also a basis-independent notion.



The metric g plays the same role as the Minkowski metric m did in
special relativity:

A nonzero vector X is timelike if g(X ,X ) < 0, spacelike if
g(X ,X ) > 0 and null if g(X ,X ) = 0.

Curves are timelike/spacelike/null if their tangent vector is
everywhere timelike/spacelike/null.

On a timelike curve we define the proper time as the
parameter such that the tangent vector V satisfies
g(V ,V ) = −1. Similarly, on a spacelike curve the proper
distance is defined so that g(V ,V ) = 1.



Notation for the metric

In terms of local coordinates xa, we write

g = gabdx
adxb = ds2

Often we take for granted that the metric is symmetric, and so for brevity
we write a non-symmetric expression, with the understanding that the
metric is found by symmetrising. For example, we might write

g = dx1dx2,

which should be understood as

g =
1

2
dx1dx2 +

1

2
dx2dx1,

i.e. g12 = g21 = 1
2 .

The quantity ds2, which is really just the metric tensor, is sometimes
called the line element.



We also define the inverse metric g−1, a rank (2, 0) tensor defined
by

g−1(X [, η) = η(X )

for all vector fields X and covector fields η. In components, this
reads

(g−1)abXaηb = (g−1)abgacX
cηb = X aηa = δbcX

cηb.

Since this holds for all X and η, it follows that (g−1)abgac = δbc ,
i.e. the matrix (g−1)ab is the inverse of the matrix gab.



We can use the inverse metric to raise indices: for a covector field
η, define the vector field η] by

g(η],Y ) = η(Y )

for all vector fields Y . In components

(η])a = (g−1)abηb = ηa



A common notation is to avoid including the inverse sign when
writing the inverse metric components, i.e.

(g−1)ab = gab.

This is actually consistent with our notation: raising both indices
on the metric:

gab = (g−1)ac(g−1)bdgcd = (g−1)acδbc = (g−1)ab.


