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We are still missing one key tool, before we can start to do physics
on curved spaces: the ability to do calculus. It’s possible to
develop a theory of both differentiation and integration on
manifolds, but in this course we will focus on differentiation. This
will allow us to write down physical laws and solve equations of
motion, and also eventually to understand curvature.



What do we already know?

We know how to differentiate scalar fields: given a scalar field f ,
we defined the covector field df by

df (X ) = X (f ).

This is the generalization of the ‘gradient of a function’ to
manifolds, and X (f ) is the ‘directional derivative’ of f in the
direction of the vector X .



The components df in the coordinate system xa are given by

(df )a = (df )(∂a) = ∂a(f ).

Since this holds in any coordinate system, we write

(df )µ = ∂µf .



What about differentiating vector fields? There is one obvious
idea: choose some local coordinates and differentiate the
components of the vector field, and form the (1, 1) tensor field
with those components. Unfortunately this won’t work: consider a
change of coordinates xa → ya

′
. Then
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From this we see that the expression ∂aX
b doesn’t transform like

the components of a (1, 1) tensor field – in other words, the
definition above depends on which coordinate system we start in.



What if we try using index-free notation? Suppose that we want to
differentiate the vector field X in the direction of the vector field
Y . We could try to define a vector field Y (X ) which acts on scalar
fields f as

Y (X )(f ) := Y (X (f )).

Although this obeys linearity, it does not obey the Leibniz rule, and
so this does not define a vector field. In other words, there is no
curve with tangent vector V , such that V (f ) = Y (X )(f ) for all
smooth functions f .

The reason this can’t work is fairly obvious: the expression above
depends on the second derivatives of f , whereas a vector field only
takes first derivatives of f .



Affine connections

There are three approaches to taking derivatives vector fields and other
higher-order tensor fields:

1 the exterior derivative (see problem sheet 2, only works for
completely antisymmetric (0, n) tensor fields),

2 the Lie derivative (see GR2), and

3 affine connections.

We’ll work with affine connections. Our plan is:

1 Define affine connections in the abstract and deduce some of their
properties.

2 Show that many different affine connections exist on a smooth
manifold.

3 Show that, on Lorentzian manifold, there is a unique preferred
connection with extra special properties.



An affine connection is a map from a pair of vector fields to a
vector field

Γ : (X ,Y ) 7→ ∇XY

with the following properties:

1 ∇ is C∞-linear in the first variable: for all scalar fields f and
vector fields X , Y , Z ,

∇fX+YZ = f∇XZ +∇YZ .

2 ∇ satisfies the Leibniz rule in the second variable:

∇X (fY + Z ) = f∇XY + (X (f ))Y +∇XZ .



Components of a connection

We can define the components of a connection, also called the
Christoffel symbols. These are defined, with respect to the local
coordinates xa, as follows:

∇∂b∂c := Γa
bc∂a

⇔ Γa
bc = (g−1)adg(∇∂b∂c , ∂d)

We will usually write ∇a instead of ∇∂a .



The Christoffel symbols Γa
bc are not the components of a (1, 2)

tensor field. If we change coordinates, then
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The first term transforms like a (1, 2) tensor, but the second term
does not, so the Christoffel symbols cannot be used to define a
tensor field.

The anomalous term in the transformation of the Christoffel
symbols will exactly cancel the anomalous transformation of the
object ∂aX

b!



Covariant derivatives

If we have an affine connection Γ, we can take covariant derivatives
of vector fields as well as more general tensor fields.

The covariant derivative of a vector field X is a (1, 1) tensor field
∇X , defined by

∇X : (Y , η) 7→ η(∇YX )

for all vector fields Y and covector fields X (check that this is
C∞-linear).
In abstract index notation, we write this tensor field as ∇µX ν . The
components of the tensor field ∇X with respect to some local
coordinates are written ∇aX

b. Note the positions of the indices.



The components of the covariant derivative

Expanding in terms of coordinate induced vector fields:
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where in the last line we have relabelled some of the dummy
indices. Hence, the components of ∇X are

∇aX
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Don’t take the position of these indices too seriously! Consider the
component ∇0X

1:

∇0X
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In general this is not an operator “∇0” acting on the component
X 1 - instead, it depends on all of the components of X . It should
be thought of as the (0, 1) component of the (1, 1) tensor field
∇X .



Derivatives of general tensor fields

We can extend the covariant derivative to act on scalar fields, covector
fields and higher rank tensor fields.

For a scalar field f , we define

∇f = df .

We now extend the covariant derivative to act on other tensors by
requiring that it obeys the Leibniz rule for products.
So, for a covector field η and an arbitrary vector field X , in some
arbitrary coordinate system we have
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b
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Since this holds for all vector fields X , we must have

∇aηb = ∂aηb − Γc
abηc .



Following the same kind of reasoning, we can write out the formula
for the covariant derivative of a tensor of general rank:
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