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Last time we defined the Christoffel symbols Γa
bc associated with a

given affine connection Γ (with associated covariant derivative ∇),
but we did not actually construct an affine connection. We can
easily see that many affine connections are possible:

Choose some local coordinates, and pick some smooth
functions Γa

bc . These will be the Christoffel symbols in the
chosen coordinate system – e.g. for a vector field X , we define
∇X as the vector field with components

∇aX
b = ∂aX

b + Γb
acX

c .

The Christoffel symbols in any other coordinates can be found
by using the transformation law for Christoffel symbols. From
this transformation law, it follows that our definition of the
tensor ∇X is independent of our original choice of
coordinates.



The commutator

Which affine connection should we use? Before answering this, we
need to define a tensor called the torsion, and before that we need
to define the commutator of two vector fields X and Y .
The commutator [X ,Y ] is the vector field which acts on scalar
fields as

[X ,Y ](f ) := X (Y (f ))− Y (X (f )).

This does define a vector field, since it satisfies linearity and the
Leibniz rule. In components

[X ,Y ]a = X b∂bY
a − Y b∂bX

a.

We can construct the vector with these components in the chosen
coordinate system, and then we can check that this definition is
independent of the particular coordinate system. Note that the
commutator can be defined without using an affine connection!



The torsion

The torsion of the connection ∇ is the (1, 2) tensor field T , whose
action on the covector field η and the vector fields X , Y is

T (η,X ,Y ) = η (∇XY −∇YX − [X ,Y ]) .

In terms of components, this is (exercise)

T a
bc = Γa

bc − Γa
cb.



The Levi-Civita connection

The Levi-Civita connection is torsion free: Tµ
νρ = 0. In other words

the Christoffel symbols are symmetric in their lower indices.
The other feature of the Levi-Civita connection is that it is
compatible with the metric:

∇µgνρ = 0

Using these two properties, we can calculate

∇agbc +∇bgac −∇cgab

= ∂agbc + ∂bgac − ∂cgab
− Γd

abgdc − Γd
acgbd − Γd

bagdc − Γd
bcgad + Γd

cagdb + Γd
cbgad

= ∂agbc + ∂bgac − ∂cgab − 2Γd
abgdc

⇒ Γc
ab =

1

2
(g−1)cd (∂agbd + ∂bgad − ∂dgab)



The components of the Levi-Civita connection are given by the
expression

Γc
ab =

1

2
(g−1)cd (∂agbd + ∂bgad − ∂dgab)

in all coordinate systems. You can check that this expression does
not transform as a (1, 2) tensor field, but instead as the
components of an affine connection.

From this point onwards, we will always work with the Levi-Civita
connection.



Normal coordinates

We can always choose coordinates so that, at some point, the
Christoffel symbols vanishes, i.e. given p ∈M, we can choose
some local coordinates xa in a neighbourhood of p such that

Γa
bc

∣∣
p

= 0.

These coordinates can also further chosen so that the components
of the metric at p are

gab
∣∣
p

= diag(−1, 1, 1, 1).

These coordinates are called normal coordinates at p.



Using normal coordinates can simplify a lot of computations - you
should remember that, if some equation holds in a particular
coordinate system, and if that equation can be written entirely in
terms of tensors or tensor fields, then the equation must hold in all
coordinate systems. E.g. if we derive an expression like

X a = Y b∇bZ
a,

for the components relative to a system of normal coordinates, and
if this equation also holds at an arbitrary point in the manifold,
then we actually have an equality between vector fields:

X = ∇YZ .

The proof that normal coordinates exist (given a torsion-free
connection) are in the appendix to the lecture notes
(non-examinable).



Parallel transport

A tensor field T is parallel transported (or “parallely transported”)
along the integral curves of the vector field X if

∇XT = 0,

or, if you prefer abstract indices

X ρ∇ρTµ1µ2...µn
ν1ν2...νm = 0.

This is the closest we can get to saying that T remains “parallel to
itself” when moved in the direction X .



Note, however, that the components of T in any particular
coordinate system do not necessarily remain constant!

In normal coordinates at the point p the derivative of the
components of T in the direction X vanishes:

X c∂cT
a1a2...an

b1b2...bm
= 0

but this only holds at the point p. Note also that this is not a
‘tensorial’ equation, since it involves the “non-tensorial” operator
∂c , so it is not true in a general coordinate system.



X is the tangent vector to the curve γ. Here, the vector field V is parallel
transported along γ, i.e. ∇XV = 0.


