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“Straight lines” played important physical roles in pre-GR theories:

In Aristotelian/atomist spacetimes, “vertical” straight lines
represented the paths of particles/observers “at rest”.

In Galilean spacetimes, any straight line that’s transverse to the
surfaces of “constant time” represents the path of a particle moving
at a constant velocity, or an “inertial observer”.

In Minkowski spacetime, a straight line with tangent vector in the
interior of the light cones represents represents the path of a particle
moving at a constant velocity, or an “inertial observer”.

In all cases, these special straight lines represent the paths of “test
particles” on which no external forces are acting.

Generalising these ideas to curved spacetime is key to interpreting GR,
but spacetime no longer has a vector space/affine space/vector bundle
structure, so it is not obvious how to do this.



Fixing a vector V at a point p, and then “moving in that
direction” (i.e. considering points q(λ) s.t. q − p = λV ) is one way
to generate straight lines in an affine space which does not easily
generalise to a curved space.

Two ways which do generalise:

1 curves which “minimise distance”, and

2 curves which “do not accelerate”.



Let γ be a timelike curve through points p and q, parametrised so
that γ(0) = p and γ(1) = q. Work in local coordinates xa, where
γ ◦ φ−1

U = xa(λ). Then the proper time along the curve is

τ(p, q)[γ] :=

∫ 1

0

√
−gab(x)

dxa(λ)

dλ

dxb(λ)

dλ
dλ.

To see this, change parameter from λ to τ , then we see that

τ(p, q)[γ] =

∫ τ(p,q)[γ]

0

√
−gab(x)

dxa

dτ

dxb

dτ

(
dτ

dλ

)2(dλ

dτ

)
dτ

=

∫ τ(p,q)[γ]

0
dτ.



The Euler-Lagrange equations can be used to find the curves which
extremise this integral. Defining the Lagrangian

L :=

√
−gab(x)

dxa(λ)

dλ

dxb(λ)

dλ

Varying the path xa(λ), the Euler-Lagrange equations give (exercise)

d2xa

dλ2
+

1

2
(g−1)ad (∂bgcd + ∂cgbd − ∂dgbc)

dxb

dλ

dxc

dλ
= L −1 dL

dλ

dxa

dλ

⇔ d2xa

dλ2
+ Γa

bc

dxb

dλ

dxc

dλ
= L −1 dL

dλ

dxa

dλ
.



The Levi-Civita connection arises naturally! In fact, using
variational techniques (particularly looking for conserved
quantities) applied to this Lagrangian is often the quickest and
easiest way to derive the components of the Levi-Civita
connection.

If we wish, we can choose the variable λ to be the proper time τ ,
in which case L ≡ 1, and we obtain

d2xa

dτ2
+ Γa

bc

dxb

dτ

dxc

dτ
= 0

Exactly the same equations can be derived for spacelike curves by
extremising the proper length.

These equations are called the geodesic equations and solutions are
called geodesics.



The geodesic equation is a second order ODE for the coordinates
xa(τ) of the geodesic. To solve it, we need both the initial position
xa(0) and the initial tangent vector dxa

dτ .

We can also write this equation in terms of the tangent vector to
the curve γ. The components of the tangent vector are X a = dxa

dτ ,
and so

dX a

dτ
+ Γa

bcX
bX c = 0.



Along the curve γ (parametrised by proper time) with tangent
vector X , for any function f we have

d

dτ
f = X a∂af = X (f ),

so the geodesic equation can be written as

X b∂bX
a + Γa

bcX
bX c = 0

⇔ X b∇bX
a = 0

Sp we can write the geodesic equation in the ‘tensorial’ manner:

∇XX = 0

in other words, X is parallel transported along its own integral
curve.



This gives us a new way to think about geodesics: a geodesic is a
curve along which the tangent vector to the curve remains parallel
to itself. This is a bit like our first definition of a straight line in an
affine space.
It also means that the curve does not accelerate. Define the
acceleration vector along the curve

a = ∇XX .

In normal coordinates at a point p, this means that

aa =
d2xa

dτ2
,

but note that this is not a tensorial expression: in a general
coordinate system,

aa =
d2xa

dτ2
+ Γa

bc

(
dxb

dτ

)(
dxc

dτ

)
.



This also allows us to define null geodesics: a null geodesic is a
curve whose tangent vector X is both null and satisfies ∇XX = 0.

Any curve satisfying ∇XX = 0 is said to be affinely parametrised
(it is non-affinely parametrised, but still a geodesic, if it satisfies
∇XX = fX for some scalar function f ).

If a geodesic is initially timelike/spacelike/null, then it will remain
so: let λ be an affine parameter, then

d

dλ
(XµXµ) = ∇X (XµXµ)

= 2gµνX
ν(∇XX )µ

= 0

where we have used the fact that ∇g = 0. So g(X ,X ) is constant
along a geodesic.



Finally, note that an alternative Lagrangian, which only works for
affinely parametrised null geodesics, is

L = gab
dxa

dλ

dxb

dλ
.

We can check that, varying this, we obtain the same
Euler-Lagrange equations as we obtained originally (with
L = constant, which is another way to define an affine
parameter).

We can choose to parametrise by proper time in the timelike case,
in which L = −1, or proper length in the spacelike case, in which
case L = 1. There are no privileged affine parameters in the null
case.

This formulation has two advantages: it is easier to work with (no
square roots!), and it works for null geodesics (we don’t divide by
L ).



Interpretation

Just as in pre-GR theories, geodesics are interpreted as the paths
of test particles or observers who do not experience any external
forces. If the particles is massive then it will follow a timelike
geodesic, if it is massless then it will follow a null geodesic.

It is important that these test particles are “small” – large bodies
can experience tidal forces. As we will see later, energy-momentum
will itself cause curvature of spacetime, and thus influence the
behaviour of geodesics, so it is also important that the test particle
has negligible energy-momentum. In this case we might say that
the particle moves along geodesics in the “background spacetime”,
or that we are “neglecting back-reaction”.


