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The torsion is a tensor

Recall from lectures that the “torsion tensor” is the map

T (η,X ,Y ) = η(∇XY −∇YX − [X ,Y ]),

where η is a covector field and X , Y are vector fields.
To prove that this is a tensor, we need to show C∞ linearity in all
arguments. Linearity in the first argument (η) is obvious. Also, the
expression is obviously antisymmetric in its second and third
arguments, so it is sufficient to prove linearity in the second
argument.
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For a covector field η, scalar field a and vector fields X , X ′ and Y
we can calculate

T (η, aX + X ′,Y ) = η
(
∇aX+X ′Y −∇Y (aX + X ′)− [aX + X ′,Y ]

)
= η

(
a∇XY +∇X ′Y − a∇YX − Y (a)X −∇YX

′

− a[X ,Y ] + Y (a)X − [X ′,Y ]
)

= aη(∇XY −∇YX − [X ,Y ])

+ η(∇X ′Y −∇YX
′ − [X ′,Y ′])

= aT (η,X ,Y ) + T (η,X ′,Y ).
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Curves and their properties on a model spacetime

Consider the model three-dimensional spacetime R× S2, with
metric

g = −dt2 + dθ2 + sin2 θdφ2,

where t ∈ R, θ ∈ (0, π) and φ ∈ (0, 2π). Note that these
coordinates don’t cover the whole sphere – we would need to use
another set of coordinates to cover the line φ = 0 and the two
poles. But in this question we’ll just work in the region covered by
these coordinates.
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Consider a curve γ, given in local coordinates (t, θ, φ) (i.e. we give
γ̃ = γ ◦ φ−1

U ) as
γ̃(λ) = (λ, a(λ), b(λ)) .

The tangent vector to this curve is

V = ∂t +
da

dλ
∂θ +

db

dλ
∂φ = ∂t + ȧ∂θ + ḃ∂φ,

so we can calculate

g(V ,V ) = −1 + ȧ2 + sin2 θḃ2.
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Now suppose that the curve γ is timelike, so

−1 + ȧ2 + (sin2 a)ḃ2 < 0.

Then we can change from the parameter λ to proper time. Consider a
change of parametrisation λ = λ(τ); then we can see that the new
tangent vector is

V ′ =
dλ

dτ

(
∂t + ȧ∂θ + ḃ∂φ

)
,

so, to change to proper time, we need to solve the equation(
dλ

dτ

)2

=
1

1− ȧ2 − (sin2 a)ḃ2
,

which we can also write as

dτ

dλ
=

√
1− ȧ2 − (sin2 a)ḃ2,

where we recall that a and b are functions of λ.
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For example: suppose that a(λ) ≡ π
2 and b(λ) = vλ for some

v < 1. Then the curve, parametrised by proper time, is given in
local coordinates by

γ̃(τ) =

(
τ√

1− v2
,
π

2
,

vτ√
1− v2

)
.
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Geodesics and Christoffel symbols

Next, let’s work out the geodesic equation (and solve it), and
simultaneously derive the Christoffel symbols relative to our chosen
local coordinates.
The easiest way to do this is to work with the Lagrangian

L = gabẋ
aẋb,

where the dots are derivatives w.r.t. an affine parameter. Hence

L = −ṫ2 + θ̇2 + sin2 θφ̇2.
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L = −ṫ2 + θ̇2 + sin2 θφ̇2.

We can immediately find some conserved quantities:

L is independent of t, so E := −1
2
∂L
∂ ṫ

= ṫ is constant along
geodesics.

L is independent of φ, so Ω = 1
2
∂L
∂φ̇

= sin2 θφ̇ is constant

along geodesics.

L itself is constant: it can be set to either −1, 0 or 1 in the
timelike/null/spacelike cases.
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Let’s concentrate on timelike geodesics. Substituting the conserved
quantities in to the equation for L , we find

−1 = −E 2 + θ̇2 +
Ω2

sin2 θ
,

where now the dots are derivatives w.r.t. proper time τ . You can
solve this for θ(τ), but it’s a bit of a mess. You can understand the
motion by considering a particle moving in a 1-dimensional
potential, with unit mass, potential V (θ) = Ω2

2 sin2 θ
and energy

1
2 (E 2 − 1):

1

2
θ̇2 +

Ω2

2 sin2 θ
=

1

2
(E 2 − 1).
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To work out the Christoffel symbols, remember that the Euler-Lagrange
equations will be of the form

ẍa + Γa
bc ẋ

b ẋc = 0.

First consider the E-L equation for t: this is

ẗ = 0,

so we conclude that Γt
ab = 0. Next consider the E-L equation for θ: this is

θ̈ − sin θ cos θφ̇2 = 0,

so we have Γθ
φφ = − sin θ cos θ, and Γθ

ab = 0 otherwise. Finally consider
the E-L equation for φ:

sin2 θφ̈+ 2(sin θ cos θ)φ̇θ̇ = 0,

and so we have Γφ
φθ = Γφ

θφ = cot θ, and Γφ
ab = 0 otherwise.
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