Prelims Statistics and Data Analysis, Lectures 1–10

Christl Donnelly

Trinity Term 2023 (version of 12-03-2022)

In some places these notes will contain more than the lectures and in other places they will contain less. I strongly encourage you to attend all of the lectures.

These notes are largely based on previous versions of the course, and I would like to make grateful acknowledgement to Neil Laws, Peter Donnelly and Bernard Silverman. Please send any comments or corrections to christl.donnelly@stats.ox.ac.uk.

TT 2023 updates:

None so far. If you spot any errors please let me know.

Introduction

Probability: in probability we start with a probability model *P*, and we deduce properties of *P*.

E.g. Imagine flipping a coin 5 times. Assuming that flips are *fair* and *independent*, what is the probability of getting 2 heads?

Statistics: in statistics we have *data*, which we regard as having been generated from some *unknown* probability model *P*. We want to be able to say some useful things about *P*.

E.g. We flip a coin 1000 times and observe 530 heads. Is the coin fair? i.e. is the probability of heads greater than $\frac{1}{2}$? or could it be equal to $\frac{1}{2}$?

Precision of estimation

Question: What is the average body temperature in humans?

Collect data: let x_1, \ldots, x_n be the body temperatures of *n* randomly chosen individuals, i.e. our *model* is that individuals are chosen independently from the general population.

Then estimate: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ could be our *estimate*, i.e. the *sample* average.

• How precise is \overline{x} as an estimate of the population mean?

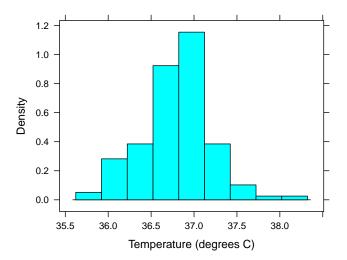


Figure. Histogram of body temperatures of 130 individuals. A description of the dataset is available here: https://rdrr.io/cran/UsingR/man/normtemp.html

Relationships between observations

Let y_i = price of house in month x_i , for i = 1, ..., n.

- Is it reasonable that $y_i = \alpha + \beta x_i + "error"?$
- Is $\beta > 0$?
- How accurately can we estimate α and β , and how do we estimate them?

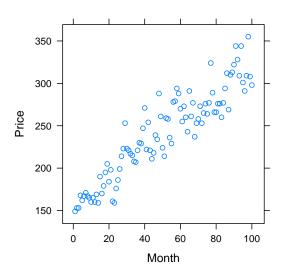


Figure. Scatterplot of some Oxford house price data.

Notation and conventions

Lower case letters x_1, \ldots, x_n denote *observations*: we regard these as the observed values of random variables X_1, \ldots, X_n .

Let $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{X} = (X_1, ..., X_n)$.

It is convenient to think of x_i as

- the observed value of *X_i*
- or sometimes as a possible value that *X_i* can take.

Since x_i is a possible value for X_i we can calculate probabilities, e.g. if $X_i \sim \text{Poisson}(\lambda)$ then

$$P(X_i = x_i) = \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}, \quad x_i = 0, 1, \dots$$

1 Random Samples

Definition. A *random sample* of size *n* is a set of random variables X_1, \ldots, X_n which are independent and identically distributed (i.i.d.).

Example. Let X_1, \ldots, X_n be a random sample from a Poisson(λ) distribution.

E.g. X_i = # traffic accidents on St Giles' in year *i*.

We'll write $f(\mathbf{x})$ to denote the joint probability mass function (p.m.f.) of X_1, \ldots, X_n . Then

$$f(\mathbf{x}) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$
 definition of joint p.m.f.

$$= P(X_1 = x_1)P(X_2 = x_2)\dots P(X_n = x_n)$$
 by independence

$$= \frac{e^{-\lambda}\lambda^{x_1}}{x_1!} \cdot \frac{e^{-\lambda}\lambda^{x_2}}{x_2!} \cdots \frac{e^{-\lambda}\lambda^{x_n}}{x_n!}$$
 since X_i Poisson

$$= \frac{e^{-n\lambda}\lambda^{(\sum_{i=1}^n x_i)}}{\prod_{i=1}^n x_i!}.$$

Example. Let $X_1, ..., X_n$ be a random sample from an exponential distribution with probability density function (p.d.f.) given by

$$f(x) = \frac{1}{\mu}e^{-x/\mu}, \quad x \ge 0$$

E.g. X_i = time until the first breakdown of machine *i* in a factory.

We'll write $f(\mathbf{x})$ to denote the joint p.d.f. of X_1, \ldots, X_n . Then

$$f(\mathbf{x}) = f(x_1) \dots f(x_n) \quad \text{since the } X_i \text{ are independent}$$
$$= \prod_{i=1}^n \frac{1}{\mu} e^{-x_i/\mu}$$
$$= \frac{1}{\mu^n} \exp\left(-\frac{1}{\mu} \sum_{i=1}^n x_i\right).$$

Note.

1. We use *f* to denote a p.m.f. in the first example and to denote a p.d.f. in the second example. It is convenient to use the same letter (i.e. *f*) in both the discrete and continuous cases. (In introductory probability you may often see *p* for p.m.f. and *f* for p.d.f.)

We could write $f_{X_i}(x_i)$ for the p.m.f./p.d.f. of X_i , and $f_{X_1,...,X_n}(\mathbf{x})$ for the joint p.m.f./p.d.f. of $X_i,...,X_n$. However it is convenient to keep things simpler by omitting subscripts on f.

2. In the second example $E(X_i) = \mu$ and we say " X_i has an exponential distribution with mean μ " (i.e. expectation μ).

Sometimes, and often in probability, we work with "an exponential distribution with parameter λ " where $\lambda = 1/\mu$. To change the parameter from μ to λ all we do is replace μ by $1/\lambda$ to get

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

Sometimes (often in statistics) we parametrise the distribution using μ , sometimes (often in probability) we parametrise it using λ .

In *probability* we assume that the parameters λ and μ in our two examples are known. In *statistics* we wish to estimate λ and μ from data.

- What is the best way to estimate them? And what does "best" mean?
- For a given method, how precise is the estimation?

2 Summary Statistics

The expected value of *X*, E(X), is also called its mean. This is often denoted μ .

The variance of *X*, var(X), is $var(X) = E[(X - \mu)^2]$. This is often denoted σ^2 . The standard deviation of *X* is σ .

Definition. Let X_1, \ldots, X_n be a random sample. The *sample mean* \overline{X} is defined by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

The sample variance S^2 is defined by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

The sample standard deviation is $S = \sqrt{\text{sample variance}}$.

Note.

- 1. The denominator in the definition of S^2 is n 1, not n.
- 2. \overline{X} and S^2 are random variables. Their distributions are called the *sampling distributions* of \overline{X} and S^2 .
- 3. Given observations x_1, \ldots, x_n we can compute the *observed values* \overline{x} and s^2 .
- 4. The sample mean \overline{x} is a summary of the *location* of the sample.
- 5. The sample variance s^2 (or the sample standard deviation s) is a summary of the *spread* of the sample about \overline{x} .

The Normal Distribution

The random variable *X* has a normal distribution with mean μ and variance σ^2 , written $X \sim N(\mu, \sigma^2)$, if the p.d.f. of *X* is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad -\infty < x < \infty.$$

Properties: $E(X) = \mu$, $var(X) = \sigma^2$.

Standard Normal Distribution

If $\mu = 0$ and $\sigma^2 = 1$, then $X \sim N(0, 1)$ is said to have a *standard normal distribution*. Properties:

- If $Z \sim N(0, 1)$ and $X = \mu + \sigma Z$, then $X \sim N(\mu, \sigma^2)$.
- If $X \sim N(\mu, \sigma^2)$ and $Z = (X \mu)/\sigma$, then $Z \sim N(0, 1)$.

• The cumulative distribution function (c.d.f.) of the *standard* normal distribution is

$$\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \, du.$$

This cannot be written in a closed form, but can be found by numerical integration to an arbitrary degree of accuracy.

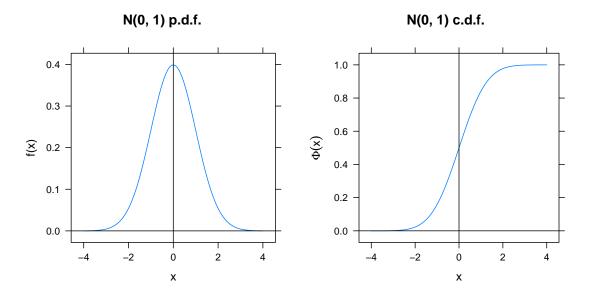


Figure 2.1. Standard normal p.d.f. and c.d.f.

3 Maximum Likelihood Estimation

Maximum likelihood estimation is a general method for estimating unknown parameters from data. This turns out to be the method of choice in many contexts, though this isn't obvious at this stage.

Example. Suppose e.g. that x_1, \ldots, x_n are time intervals between major earthquakes. Assume these are observations of X_1, \ldots, X_n independently drawn from an exponential distribution with mean μ , so that each X_i has p.d.f.

$$f(x;\mu) = \frac{1}{\mu}e^{-x/\mu}, \quad x \ge 0.$$

We have written $f(x; \mu)$ to indicate that the p.d.f. f depends on μ .

- How do we estimate *μ*?
- Is \overline{X} a good estimator for μ ?
- Is there a general principle we can use?

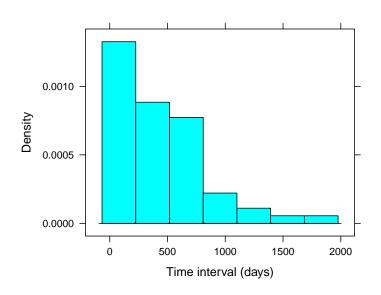


Figure 3.1. Histogram of time intervals between 62 major earthquakes 1902–77: an exponential density looks plausible. (There are more effective ways than a histogram to check if a particular distribution is appropriate, i.e. to check the exponential assumption in this case – see Part A Statistics.)

In general we write $f(x; \theta)$ to indicate that the p.d.f./p.m.f. f, which is a function of x, depends on a parameter θ . Similarly, $f(x; \theta)$ denotes the joint p.d.f./p.m.f. of **X**. (Sometimes $f(x; \theta)$ is written $f(x | \theta)$.)

The parameter θ may be a vector, e.g. $\theta = (\mu, \sigma^2)$ in the earlier $N(\mu, \sigma^2)$ example.

If we regard θ as unknown, then we need to estimate it using x_1, \ldots, x_n .

Definition. Let X_1, \ldots, X_n have joint p.d.f./p.m.f. $f(\mathbf{x}; \theta)$. Given observed values x_1, \ldots, x_n of X_1, \ldots, X_n , the *likelihood* of θ is the function

$$L(\theta) = f(\mathbf{x}; \theta). \tag{3.1}$$

The *log-likelihood* is $\ell(\theta) = \log L(\theta)$.

So $L(\theta)$ is the joint p.d.f./p.m.f. of the observed data *regarded as a function of* θ , for fixed **x**.

In the definition of $\ell(\theta)$, log means log to base *e*, i.e. log = log_{*e*} = ln.

Often we assume that X_1, \ldots, X_n are a random sample from $f(x; \theta)$, so that

$$L(\theta) = f(\mathbf{x}; \theta)$$

= $\prod_{i=1}^{n} f(x_i; \theta)$ since the X_i are independent.

Sometimes we have independent X_i whose distributions differ, say X_i is from $f_i(x; \theta)$. Then the likelihood is

$$L(\theta) = \prod_{i=1}^{n} f_i(x_i; \theta).$$

Definition. The *maximum likelihood estimate* (MLE) $\hat{\theta}(\mathbf{x})$ is the value of θ that maximises $L(\theta)$ for the given \mathbf{x} .

The idea of maximum likelihood is to estimate the parameter by the value of θ that gives the greatest likelihood to observations x_1, \ldots, x_n . That is, the θ for which the probability or probability density (3.1) is maximised.

Since taking logs is monotone, $\hat{\theta}(\mathbf{x})$ also maximises $\ell(\theta)$. Finding the MLE by maximising $\ell(\theta)$ is often more convenient.

Example (continued). In our exponential mean μ example, the parameter is μ and

$$L(\mu) = \prod_{i=1}^{n} \frac{1}{\mu} e^{-x_i/\mu} = \mu^{-n} \exp\left(-\frac{1}{\mu} \sum_{i=1}^{n} x_i\right)$$
$$\ell(\mu) = \log L(\mu) = -n \log \mu - \frac{1}{\mu} \sum_{i=1}^{n} x_i.$$

To find the maximum

$$\frac{d\ell}{d\mu} = -\frac{n}{\mu} + \frac{\sum_{i=1}^{n} x_i}{\mu^2}.$$

So

$$\frac{d\ell}{d\mu} = 0 \iff \frac{n}{\mu} = \frac{\sum_{i=1}^{n} x_i}{\mu^2} \iff \mu = \overline{x}.$$

This is a maximum since

$$\left. \frac{d^2\ell}{d\mu^2} \right|_{\mu=\overline{x}} = \frac{n}{\overline{x}^2} - \frac{2\sum_{i=1}^n x_i}{\overline{x}^3} = -\frac{n}{\overline{x}^2} < 0.$$

So the MLE is $\widehat{\mu}(\mathbf{x}) = \overline{x}$. Often we'll just write $\widehat{\mu} = \overline{x}$.

In this case the maximum likelihood *estimator* of μ is $\widehat{\mu}(\mathbf{X}) = \overline{X}$, which is a random variable. (More on the difference between estimates and estimators later.)

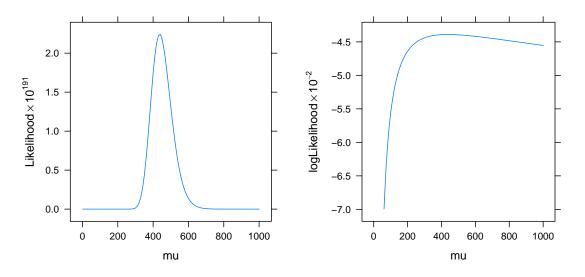


Figure 3.2. Likelihood $L(\mu)$ and log-likelihood $\ell(\mu)$ for exponential (earthquake) example.

Definition. If $\hat{\theta}(\mathbf{x})$ is the maximum likelihood estimate of θ , then the *maximum likelihood estimator* (MLE) is defined by $\hat{\theta}(\mathbf{X})$.

Note: both maximum likelihood *estimate* and maximum likelihood *estimator* are often abbreviated to MLE.

Example (Opinion poll). Suppose *n* individuals are drawn independently from a large population. Let

$$X_i = \begin{cases} 1 & \text{if individual } i \text{ is a Labour voter} \\ 0 & \text{otherwise.} \end{cases}$$

Let *p* be the proportion of Labour voters, so that

$$P(X_i = 1) = p$$
, $P(X_i = 0) = 1 - p$.

This is a Bernoulli distribution, for which the p.m.f. can be written

$$f(x;p) = P(X = x) = p^{x}(1-p)^{1-x}, \quad x = 0, 1.$$

The likelihood is

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x}$$
$$= p^r (1-p)^{n-r}$$

where $r = \sum_{i=1}^{n} x_i$. So the log-likelihood is

$$\ell(p) = \log L(p)$$

= $r \log p + (n - r) \log(1 - p)$

For a maximum, differentiate and set to zero:

$$\frac{r}{p} - \frac{n-r}{1-p} = 0 \iff \frac{r}{p} = \frac{n-r}{1-p} \iff r - rp = np - rp$$

and so p = r/n. This is a maximum since $\ell''(p) < 0$.

So $\hat{p} = r/n$, i.e. the MLE is $\hat{p} = \sum_{i=1}^{n} X_i/n$ which is the proportion of Labour voters in the sample.

Example (Genetics). Suppose we test randomly chosen individuals at a particular locus on the genome. Each chromosome can be type *A* or *a*. Every individual has two chromosomes (one from each parent), so the genotype can be *AA*, *Aa* or *aa*. (Note that order is not relevant, there is no distinction between *Aa* and *aA*.)

Hardy-Weinberg law: under plausible assumptions,

$$P(AA) = p_1 = \theta^2$$
, $P(Aa) = p_2 = 2\theta(1 - \theta)$, $P(aa) = p_3 = (1 - \theta)^2$

for some θ with $0 \leq \theta \leq 1$.

Now suppose the random sample of *n* individuals contains:

 x_1 of type AA, x_2 of type Aa, x_3 of type aa

where $x_1 + x_2 + x_3 = n$ and these are observations of X_1, X_2, X_3 . Then

$$L(\theta) = P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

= $\frac{n!}{x_1! x_2! x_3!} p_1^{x_1} p_2^{x_2} p_3^{x_3}$
= $\frac{n!}{x_1! x_2! x_3!} (\theta^2)^{x_1} [2\theta(1-\theta)]^{x_2} [(1-\theta)^2]^{x_3}.$

This is a *multinomial distribution*.

So

$$\ell(\theta) = \text{constant} + 2x_1 \log \theta + x_2 [\log 2 + \log \theta + \log(1 - \theta)] + 2x_3 \log(1 - \theta)$$
$$= \text{constant} + (2x_1 + x_2) \log \theta + (x_2 + 2x_3) \log(1 - \theta)$$

(where the constants depend on x_1 , x_2 , x_3 but not θ).

Then $\ell'(\widehat{\theta}) = 0$ gives

$$\frac{2x_1 + x_2}{\widehat{\theta}} - \frac{x_2 + 2x_3}{1 - \widehat{\theta}} = 0$$

or

$$(2x_1 + x_2)(1 - \widehat{\theta}) = (x_2 + 2x_3)\widehat{\theta}.$$

So

$$\widehat{\theta} = \frac{2x_1 + x_2}{2(x_1 + x_2 + x_3)} = \frac{2x_1 + x_2}{2n}$$

Steps:

• Write down the (log) likelihood

- Find the maximum (usually by differentiation, but not quite always)
- Rearrange to give the parameter estimate in terms of the data.

Example (Estimating multiple parameters). Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ where both μ and σ^2 are unknown.

[Here $\stackrel{iid}{\sim}$ means "are independent and identically distributed as."] The likelihood is

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

with log-likelihood

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2.$$

We maximise ℓ jointly over μ and σ^2 :

$$\frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)$$
$$\frac{\partial \ell}{\partial (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2$$

and solving $\frac{\partial \ell}{\partial \mu} = 0$ and $\frac{\partial \ell}{\partial (\sigma^2)} = 0$ simultaneously we obtain

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$
$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2.$$

Hence: the MLE of μ is the sample mean, but the MLE of σ^2 is $(n - 1)s^2/n$. (More later.)

"Estimate" and "estimator"

Estimator:

- A rule for constructing an estimate.
- A function of the random variables **X** involved in the random sample.
- Itself a random variable.

Estimate:

- The numerical value of the estimator for the particular data set.
- The value of the function evaluated at the data x_1, \ldots, x_n .

4 Parameter Estimation

Recall the earthquake example:

 $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim}$ exponential distribution, mean μ .

Possible estimators of μ :

- \overline{X}
- $\frac{1}{3}X_1 + \frac{2}{3}X_2$
- $X_1 + X_2 X_3$
- $\frac{2}{n(n+1)}(X_1 + 2X_2 + \dots + nX_n).$

How should we choose?

In general, suppose $X_1, ..., X_n$ is a random sample from a distribution with p.d.f./p.m.f. $f(x; \theta)$. We want to estimate θ from observations $x_1, ..., x_n$.

Definition. A *statistic* is any function $T(\mathbf{X})$ of X_1, \ldots, X_n that does not depend on θ .

An *estimator* of θ is any statistic $T(\mathbf{X})$ that we might use to estimate θ .

 $T(\mathbf{x})$ is the *estimate* of θ obtained via T from observed values \mathbf{x} .

Note. $T(\mathbf{X})$ is a random variable, e.g. \overline{X} .

 $T(\mathbf{x})$ is a fixed number, based on data, e.g. \overline{x} .

We can choose between estimators by studying their properties. A good estimator should take values close to θ .

Definition. The estimator $T = T(\mathbf{X})$ is said to be *unbiased* for θ if, whatever the true value of θ , we have $E(T) = \theta$.

This means that "on average" *T* is correct.

Example (Earthquakes). Possible estimators \overline{X} , $\frac{1}{3}X_1 + \frac{2}{3}X_2$, etc.

Since $E(X_i) = \mu$, we have

$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu$$
$$E(\frac{1}{3}X_1 + \frac{2}{3}X_2) = \frac{1}{3}\mu + \frac{2}{3}\mu = \mu.$$

Similar calculations show that $X_1 + X_2 - X_3$ and $\frac{2}{n(n+1)} \sum_{j=1}^n j X_j$ are also unbiased.

Example (Normal variance). Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, with μ and σ^2 unknown, and let $T = \frac{1}{n} \sum (X_i - \overline{X})^2$. Then *T* is the MLE of σ^2 . Is *T* unbiased?

Let $Z_i = (X_i - \mu)/\sigma$. So the Z_i are independent and N(0, 1), $E(Z_i) = 0$, $var(Z_i) = E(Z_i^2) = 1$.

$$\begin{split} E[(X_i - \overline{X})^2] \\ &= E[\sigma^2(Z_i - \overline{Z})^2] \\ &= \sigma^2 \operatorname{var}(Z_i - \overline{Z}) \quad \text{since } E(Z_i - \overline{Z}) = 0 \\ &= \sigma^2 \operatorname{var}\left(-\frac{1}{n}Z_1 - \frac{1}{n}Z_2 - \dots + \frac{n-1}{n}Z_i + \dots - \frac{1}{n}Z_n\right) \\ &= \sigma^2 \left(\frac{1}{n^2} \operatorname{var}(Z_1) + \frac{1}{n^2} \operatorname{var}(Z_2) + \dots + \frac{(n-1)^2}{n^2} \operatorname{var}(Z_i) + \dots + \frac{1}{n^2} \operatorname{var}(Z_n)\right) \\ &\quad \text{since } \operatorname{var}\left(\sum a_i U_i\right) = \sum a_i^2 \operatorname{var}(U_i) \text{ for indep } U_i \\ &= \sigma^2 \left((n-1) \times \frac{1}{n^2} + \frac{(n-1)^2}{n^2}\right) \\ &= \frac{(n-1)}{n} \sigma^2. \end{split}$$

So

$$E(T) = \frac{1}{n} \sum_{i=1}^{n} E[(X_i - \overline{X})^2] = \frac{(n-1)}{n} \sigma^2 < \sigma^2.$$

Hence *T* is *not* unbiased, *T* will *underestimate* σ^2 on average. But

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{n}{n-1}T$$

so the sample variance satisfies

$$E(S^2) = \frac{n}{n-1}E(T) = \sigma^2.$$

So S^2 is unbiased for σ^2 .

Example (Uniform distribution – some unusual features!). Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim}$ Uniform[0, θ], where $\theta > 0$, i.e.

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \le x \le \theta\\ 0 & \text{otherwise.} \end{cases}$$

What is the MLE for θ ? Is the MLE unbiased?

Calculate the likelihood:

$$L(\theta) = \prod_{i=1}^{n} f(x; \theta)$$

=
$$\begin{cases} \frac{1}{\theta^{n}} & \text{if } 0 \leq x_{i} \leq \theta \text{ for all } i \\ 0 & \text{otherwise} \end{cases}$$

=
$$\begin{cases} 0 & \text{if } 0 < \theta < \max x_{i} \\ \frac{1}{\theta^{n}} & \text{if } \theta \geq \max x_{i}. \end{cases}$$

Note: $\theta \ge x_i$ for all $i \iff \theta \ge \max x_i$. (And $\max x_i$ means $\max_{1 \le i \le n} x_i$).

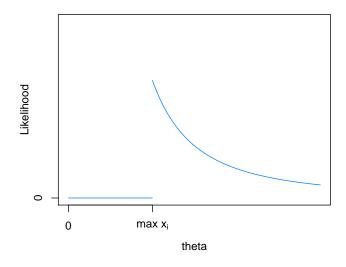


Figure 4.1. Likelihood $L(\theta)$ for Uniform[0, θ] example.

From the diagram:

- the max occurs at $\hat{\theta} = \max x_i$
- this is *not* a point where $\ell'(\theta) = 0$
- taking logs doesn't help.

Consider the range of values of *x* for which $f(x; \theta) > 0$, i.e. $0 \le x \le \theta$. The thing that makes this example different to our previous ones is that this range *depends* on θ (and we must take this into account because the likelihood is a *function* of θ).

The MLE of θ is $\hat{\theta} = \max X_i$. What is $E(\hat{\theta})$?

Find the c.d.f. of $\hat{\theta}$:

$$F(y) = P(\widehat{\theta} \leq y)$$

= $P(\max X_i \leq y)$
= $P(X_1 \leq y, X_2 \leq y, \dots, X_n \leq y)$
= $P(X_1 \leq y)P(X_2 \leq y) \dots P(X_n \leq y)$ since X_i independent
= $\begin{cases} (y/\theta)^n & \text{if } 0 \leq y \leq \theta\\ 1 & \text{if } y > \theta. \end{cases}$

So, differentiating the c.d.f., the p.d.f. is

$$f(y) = \frac{ny^{n-1}}{\theta^n}, \quad 0 \le y \le \theta.$$

So

$$E(\widehat{\theta}) = \int_0^{\theta} y \cdot \frac{ny^{n-1}}{\theta^n} \, dy$$
$$= \frac{n}{\theta^n} \int_0^{\theta} y^n \, dy$$
$$= \frac{n\theta}{n+1}.$$

So $\hat{\theta}$ is *not* unbiased. But note that it *is* asymptotically unbiased: $E(\hat{\theta}) \to \theta$ as $n \to \infty$. In fact under mild assumptions MLEs are always asymptotically unbiased.

4.1 Further Properties of Estimators

Definition. The *mean squared error* (MSE) of an estimator *T* is defined by

$$MSE(T) = E[(T - \theta)^2].$$

The *bias* b(T) of *T* is defined by

$$b(T) = E(T) - \theta.$$

Note.

- 1. Both MSE(*T*) and b(T) may depend on θ .
- 2. MSE is a measure of the "distance" between *T* and θ , so is a good overall measure of performance.
- 3. *T* is unbiased if b(T) = 0 for all θ .

Theorem 4.1. $MSE(T) = var(T) + [b(T)]^2$.

Proof. Let $\mu = E(T)$. Then

$$MSE(T) = E[\{(T - \mu) + (\mu - \theta)\}^{2}] \\= E[(T - \mu)^{2} + 2(\mu - \theta)(T - \mu) + (\mu - \theta)^{2}] \\= E[(T - \mu)^{2}] + 2(\mu - \theta)E[T - \mu] + (\mu - \theta)^{2} \\= var(T) + 2(\mu - \theta) \times 0 + (\mu - \theta)^{2} \\= var(T) + [b(T)]^{2}.$$

So an estimator with small MSE needs to have small variance *and* small bias. Unbiasedness alone is not particularly desirable – it is the combination of small variance and small bias which is important.

Reminder

Suppose a_1, \ldots, a_n are constants. It is always the case that

$$E(a_1X_1+\cdots+a_nX_n)=a_1E(X_1)+\cdots+a_nE(X_n).$$

If X_1, \ldots, X_n are independent then

$$\operatorname{var}(a_1X_1 + \dots + a_nX_n) = a_1^2\operatorname{var}(X_1) + \dots + a_n^2\operatorname{var}(X_n).$$

In particular, if X_1, \ldots, X_n is a random sample with $E(X_i) = \mu$ and $var(X_i) = \sigma^2$, then

$$E(\overline{X}) = \mu$$
 and $\operatorname{var}(\overline{X}) = \frac{\sigma^2}{n}$.

Example (Uniform distribution). Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}[0, \theta]$, i.e.

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \le x \le \theta\\ 0 & \text{otherwise.} \end{cases}$$

We will consider two estimators of θ :

- $T = 2\overline{X}$, the natural estimator based on the sample mean (because the mean of the distribution is $\theta/2$)
- $\hat{\theta} = \max X_i$, the MLE.

Now $E(T) = 2E(\overline{X}) = \theta$, so *T* is unbiased. Hence

$$MSE(T) = var(T)$$
$$= 4 var(\overline{X})$$
$$= \frac{4 var(X_1)}{n}$$

We have $E(X_1) = \theta/2$ and

$$E(X_1^2) = \int_0^\theta x^2 \cdot \frac{1}{\theta} \, dx = \frac{\theta^2}{3}$$
$$\operatorname{var}(X_1) = \frac{\theta^2}{3} - \left(\frac{\theta}{2}\right)^2 = \frac{\theta^2}{12}$$

hence

 \mathbf{SO}

$$MSE(T) = \frac{4 \operatorname{var}(X_1)}{n} = \frac{\theta^2}{3n}.$$

Previously we showed that $\hat{\theta}$ has p.d.f.

$$f(y) = \frac{ny^{n-1}}{\theta^n}, \quad 0 \le y \le \theta$$

and $E(\widehat{\theta}) = n\theta/(n+1)$. So $b(\widehat{\theta}) = n\theta/(n+1) - \theta = -\theta/(n+1)$. Also,

$$E(\widehat{\theta}^2) = \int_0^\theta y^2 \cdot \frac{ny^{n-1}}{\theta^n} \, dy = \frac{n\theta^2}{n+2}$$

so

$$\operatorname{var}(\widehat{\theta}) = \theta^2 \left(\frac{n}{n+2} - \frac{n^2}{(n+1)^2} \right) = \frac{n\theta^2}{(n+1)^2(n+2)}$$

hence

$$MSE(\widehat{\theta}) = var(\widehat{\theta}) + [b(\widehat{\theta})]^{2}$$
$$= \frac{2\theta^{2}}{(n+1)(n+2)}$$
$$< \frac{\theta^{2}}{3n} \quad \text{for } n \ge 3$$
$$= MSE(T).$$

- $MSE(\widehat{\theta}) \ll MSE(T)$ for large *n*, so $\widehat{\theta}$ is much better its MSE decreases like $1/n^2$ rather than 1/n.
- Note that $(\frac{n+1}{n})\widehat{\theta}$ is unbiased and

$$MSE\left(\frac{n+1}{n}\widehat{\theta}\right) = var\left(\frac{n+1}{n}\widehat{\theta}\right)$$
$$= \frac{(n+1)^2}{n^2}var(\widehat{\theta})$$
$$= \frac{\theta^2}{n(n+2)}$$
$$< MSE(\widehat{\theta}) \quad \text{for } n$$

However, among all estimators of the form $\lambda \hat{\theta}$, the MSE is minimized by $(\frac{n+2}{n+1})\hat{\theta}$.

≥ 2.

[To show this: note $var(\lambda \hat{\theta}) = \lambda^2 var(\hat{\theta})$ and $b(\lambda \hat{\theta}) = \frac{\lambda n \theta}{n+1} - \theta$. Now plug in formulae and minimise over λ .]

Estimation so far

So far we've considered getting an estimate which is a single number – a *point* estimate – for the parameter of interest: e.g. \overline{x} , max x_i , s^2 ,

Maximum likelihood is a good way (usually) of producing an estimate (but we did better when the range of the distribution depends on θ – fairly unusual).

MLEs are usually asymptotically unbiased, and have MSE decreasing like 1/n for large n.

MLEs can be found in quite general situations.

5 Accuracy of estimation: Confidence Intervals

A crucial aspect of statistics is not just to estimate a quantity of interest, but to assess how *accurate* or *precise* that estimate is. One approach is to find an interval, called a *confidence interval* (CI) within which we think the true parameter falls.

Theorem 5.1. Suppose a_1, \ldots, a_n are constants and that X_1, \ldots, X_n are independent with $X_i \sim N(\mu_i, \sigma_i^2)$. Let $Y = \sum_{i=1}^n a_i X_i$. Then

$$Y \sim N\bigg(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\bigg).$$

Proof. See Sheet 1.

We know from Prelims Probability how to calculate the mean and variance of *Y*. The additional information here is that *Y* has a *normal* distribution, i.e. "a linear combination of normals is itself normal."

Example. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma_0^2)$ where μ is unknown and σ_0^2 is known. What can we say about μ ?

By Theorem 5.1,

$$\sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma_{0}^{2})$$
$$\overline{X} \sim N\left(\mu, \frac{\sigma_{0}^{2}}{n}\right).$$

So, standardising \overline{X} ,

$$\overline{X} - \mu \sim N\left(0, \frac{\sigma_0^2}{n}\right)$$
$$\frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \sim N(0, 1).$$

Now if $Z \sim N(0, 1)$, then P(-1.96 < Z < 1.96) = 0.95.

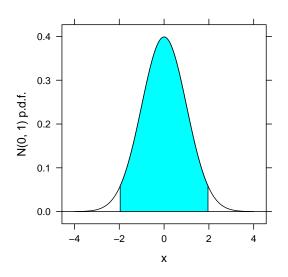


Figure 5.1. Standard normal p.d.f.: the shaded area, i.e. the area under the curve from x = -1.96 to x = 1.96, is 0.95.

So

$$P\left(-1.96 < \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} < 1.96\right) = 0.95$$
$$P\left(-1.96\frac{\sigma_0}{\sqrt{n}} < \overline{X} - \mu < 1.96\frac{\sigma_0}{\sqrt{n}}\right) = 0.95$$
$$P\left(\overline{X} - 1.96\frac{\sigma_0}{\sqrt{n}} < \mu < \overline{X} + 1.96\frac{\sigma_0}{\sqrt{n}}\right) = 0.95$$
$$P\left(\text{the interval}\left(\overline{X} \pm 1.96\frac{\sigma_0}{\sqrt{n}}\right) \text{ contains } \mu\right) = 0.95$$

Note that we write $(\overline{X} \pm 1.96 \frac{\sigma_0}{\sqrt{n}})$ to mean the interval

$$\left(\overline{X} - 1.96\frac{\sigma_0}{\sqrt{n}}, \, \overline{X} + 1.96\frac{\sigma_0}{\sqrt{n}}\right).$$

This interval is a *random* interval since its endpoints involve \overline{X} (and \overline{X} is a random variable). It is an example of a *confidence interval*.

Confidence Intervals: general definition

Definition. If $a(\mathbf{X})$ and $b(\mathbf{X})$ are two statistics, and $0 < \alpha < 1$, the interval $(a(\mathbf{X}), b(\mathbf{X}))$ is called a *confidence interval* for θ with confidence level $1 - \alpha$ if, for all θ ,

$$P(a(\mathbf{X}) < \theta < b(\mathbf{X})) = 1 - \alpha.$$

The interval $(a(\mathbf{X}), b(\mathbf{X}))$ is also called a 100 $(1 - \alpha)$ % CI, e.g. a "95% confidence interval" if $\alpha = 0.05$.

Usually we are interested in small values of α : the most commonly used values are 0.05 and 0.01 (i.e. confidence levels of 95% and 99%) but there is nothing special about any confidence level.

The interval $(a(\mathbf{x}), b(\mathbf{x}))$ is called an *interval estimate* and the random interval $(a(\mathbf{X}), b(\mathbf{X}))$ is called an *interval estimator*.

Note: $a(\mathbf{X})$ and $b(\mathbf{X})$ do *not* depend on θ .

We would like to construct $a(\mathbf{X})$ and $b(\mathbf{X})$ so that:

- the width of the interval $(a(\mathbf{X}), b(\mathbf{X}))$ is small
- the probability $P(a(\mathbf{X}) < \theta < b(\mathbf{X}))$ is large.

Percentage points of normal distribution

For any α with $0 < \alpha < 1$, let z_{α} be the constant such that $\Phi(z_{\alpha}) = 1 - \alpha$, where Φ is the N(0, 1) c.d.f. (i.e. if $Z \sim N(0, 1)$ then $P(Z > z_{\alpha}) = \alpha$).

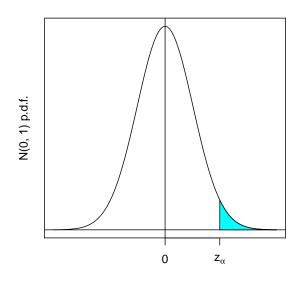


Figure 5.2. Standard normal p.d.f.: the shaded area, i.e. the area under the curve to the right of z_{α} , is α .

We call z_{α} the "1 – α quantile of N(0, 1)."

α	0.1	0.05	0.025	0.005
z_{α}	1.28	1.64	1.96	2.58

By the same argument as before, if $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma_0^2)$ with σ_0^2 known, then a level $1 - \alpha$ confidence interval for μ is

$$\left(\overline{X} \pm \frac{z_{\alpha/2}\sigma_0}{\sqrt{n}}\right).$$

Example (See slides on rainfall example). Measure annual rainfall amounts for 20 years (i.e. n = 20). Suppose $\overline{x} = 688.4$ and $\sigma_0 = 130$.

Then the endpoints of a 95% CI for μ are

$$\overline{x} \pm 1.96 \frac{\sigma_0}{\sqrt{n}} = 688.4 \pm 57.0$$

So a 95% CI for *μ* is (631.4, 745.4).

The endpoints of a 99% CI are $\overline{x} \pm 2.58 \frac{\sigma_0}{\sqrt{n}}$ giving a 99% CI for μ of (613.4, 763.4).

The symmetric confidence interval for μ above is called a *central* confidence interval for μ .

Suppose now that *c* and *d* are any constants such that

$$P(-c < Z < d) = 1 - \alpha$$

for $Z \sim N(0, 1)$.

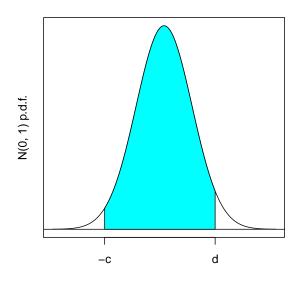


Figure 5.3. Standard normal p.d.f.: the shaded area, i.e. the area under the curve from -c to d, is $1 - \alpha$.

Then

$$P\left(\overline{X} - \frac{d\sigma_0}{\sqrt{n}} < \mu < \overline{X} + \frac{c\sigma_0}{\sqrt{n}}\right) = 1 - \alpha.$$

The choice $c = d = z_{\alpha/2}$ gives the *shortest* such interval.

One-sided confidence limits

Continuing our normal example we have

$$P\left(\frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} > -z_\alpha\right) = 1 - \alpha$$
$$P\left(\mu < \overline{X} + \frac{z_\alpha \sigma_0}{\sqrt{n}}\right) = 1 - \alpha$$

so

and so $(-\infty, \overline{X} + \frac{z_{\alpha}\sigma_0}{\sqrt{n}})$ is a "one-sided" confidence interval. We call $\overline{X} + \frac{z_{\alpha}\sigma_0}{\sqrt{n}}$ an *upper* $1 - \alpha$ *confidence limit* for μ .

Similarly

$$P\left(\mu > \overline{X} - \frac{z_{\alpha}\sigma_0}{\sqrt{n}}\right) = 1 - \alpha$$

and $\overline{X} - \frac{z_{\alpha}\sigma_0}{\sqrt{n}}$ is a *lower* $1 - \alpha$ *confidence limit* for μ .

Interpretation of a Confidence Interval

- The parameter θ is fixed but unknown.
- If we imagine repeating our experiment then we'd get new data, $\mathbf{x}' = (x'_1, \dots, x'_n)$ say, and hence we'd get a new confidence interval $(a(\mathbf{x}'), b(\mathbf{x}'))$. If we did this repeatedly we would "catch" the true parameter value about 95% of the time, for a 95% confidence interval: i.e. about 95% of our intervals would contain θ .
- The confidence level is a *coverage probability*, the probability that the *random* confidence interval (a(X), b(X)) covers the true θ. (It's a random interval because the endpoints a(X), b(X) are random variables.)

But note that the interval $(a(\mathbf{x}), b(\mathbf{x}))$ is *not* a random interval, e.g. $(a(\mathbf{x}), b(\mathbf{x})) = (631.4, 745.4)$ in the rainfall example. So it is wrong to say that $(a(\mathbf{x}), b(\mathbf{x}))$ contains θ with probability $1 - \alpha$: this interval, e.g. (631.4, 745.4), *either* definitely does *or* definitely does not contain θ , but we can't say which of these two possibilities is true as θ is unknown.

5.1 Confidence Intervals using the CLT

The Central Limit Theorem (CLT)

We know that if $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ then

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

Theorem 5.2. Let X_1, \ldots, X_n be *i.i.d.* from any distribution with mean μ and variance $\sigma^2 \in (0, \infty)$. Then, for all x,

$$P\left(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \leq x\right) \to \Phi(x) \quad as \ n \to \infty.$$

Here, as usual, Φ is the N(0, 1) c.d.f. So for large *n*, whatever the distribution of the X_i ,

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \approx N(0, 1)$$

where \approx means "has approximately the same distribution as." Usually n > 30 is ok for a reasonable approximation.

With X_1, X_2, \ldots i.i.d. from *any* distribution with $E(X_i) = \mu$, $var(X_i) = \sigma^2$:

• the weak law of large numbers (Prelims Probability) tells us that the distribution of \overline{X} concentrates around μ as *n* becomes large,

i.e. for $\epsilon > 0$, we have $P(|\overline{X} - \mu| > \epsilon) \to 0$ as $n \to \infty$

- the CLT adds to this
 - the fluctuations of \overline{X} around μ are of order $1/\sqrt{n}$
 - the asymptotic distribution of these fluctuations is normal.

Example. Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim}$ exponential mean μ , e.g. X_i = survival time of patient *i*. So

$$f(x;\mu) = \frac{1}{\mu}e^{-x/\mu}, \quad x \ge 0$$

and $E(X_i) = \mu$, $var(X_i) = \mu^2$.

For large *n*, by CLT,

$$\frac{\overline{X} - \mu}{\mu / \sqrt{n}} \approx N(0, 1)$$

So

$$P\left(-z_{\alpha/2} < \frac{\overline{X} - \mu}{\mu/\sqrt{n}} < z_{\alpha/2}\right) \approx 1 - \alpha$$
$$P\left(\mu\left(1 - \frac{z_{\alpha/2}}{\sqrt{n}}\right) < \overline{X} < \mu\left(1 + \frac{z_{\alpha/2}}{\sqrt{n}}\right)\right) \approx 1 - \alpha$$
$$P\left(\frac{\overline{X}}{1 + \frac{z_{\alpha/2}}{\sqrt{n}}} < \mu < \frac{\overline{X}}{1 - \frac{z_{\alpha/2}}{\sqrt{n}}}\right) \approx 1 - \alpha.$$

Hence an approximate $1 - \alpha$ CI for μ is

$$\left(\frac{\overline{X}}{1+\frac{z_{\alpha/2}}{\sqrt{n}}}, \frac{\overline{X}}{1-\frac{z_{\alpha/2}}{\sqrt{n}}}\right).$$

Numerically, if we have n = 100 patients and $\alpha = 0.05$ (so $z_{\alpha/2} = 1.96$), then

 $(0.84\overline{x}, 1.24\overline{x})$

is an approximate 95% CI for μ .

Example (Opinion poll). In a opinion poll, suppose 321 of 1003 voters said they would vote for the Party X. What's the underlying level of support for Party X?

Let X_1, \ldots, X_n be a random sample from the Bernoulli(*p*) distribution, i.e.

$$P(X_i = 1) = p$$
, $P(X_i = 0) = 1 - p$.

The MLE of *p* is \overline{X} . Also $E(X_i) = p$ and $var(X_i) = p(1-p) = \sigma^2(p)$ say.

For large *n*, by CLT,

$$\frac{\overline{X} - p}{\sigma(p)/\sqrt{n}} \approx N(0, 1).$$

So

$$\begin{aligned} 1 - \alpha &\approx P \bigg(- z_{\alpha/2} < \frac{\overline{X} - p}{\sigma(p)/\sqrt{n}} < z_{\alpha/2} \bigg) \\ &= P \bigg(\overline{X} - z_{\alpha/2} \frac{\sigma(p)}{\sqrt{n}} < p < \overline{X} + z_{\alpha/2} \frac{\sigma(p)}{\sqrt{n}} \bigg) \end{aligned}$$

The interval $\left(\overline{X} \pm \frac{z_{\alpha/2}}{\sqrt{n}}\sigma(p)\right)$ has approximate probability $1 - \alpha$ of containing the true p, but it is *not* a confidence interval since its endpoints depend on p via $\sigma(p)$.

To get an approximate confidence interval:

- either, solve the inequality to get $P(a(\mathbf{X}) where <math>a(\mathbf{X}), b(\mathbf{X}) don't$ depend on p
- or, estimate $\sigma(p)$ by $\sigma(\hat{p}) = \sqrt{\hat{p}(1-\hat{p})}$ where $\hat{p} = \bar{x}$ the MLE. This gives endpoints

$$\widehat{p} \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}.$$

For n = 1003 and $\hat{p} = \bar{x} = 321/1003$, this gives a 95% CI for p of (0.29, 0.35) using the two approximations: (i) CLT and (ii) $\sigma(p)$ approximated by $\sigma(\hat{p})$.

Example (Opinion polls continued). Opinion polls often mention " \pm 3% error." Note that for any *p*,

$$\sigma^2(p) = p(1-p) \leq \frac{1}{4}$$

since p(1 - p) is maximised at $p = \frac{1}{2}$. Then we have

$$P(\hat{p} - 0.03
$$\approx \Phi\left(\frac{0.03}{\sigma(p)/\sqrt{n}}\right) - \Phi\left(\frac{-0.03}{\sigma(p)/\sqrt{n}}\right)$$
$$\geq \Phi(0.03\sqrt{4n}) - \Phi(-0.03\sqrt{4n}).$$$$

For this probability to be at least 0.95 we need $0.03\sqrt{4n} \ge 1.96$, or $n \ge 1068$. Opinion polls typically use $n \approx 1100$.

Standard errors

Definition. Let $\hat{\theta}$ be an estimator of θ based on **X**. The *standard error* SE($\hat{\theta}$) of $\hat{\theta}$ is defined by

$$\operatorname{SE}(\widehat{\theta}) = \sqrt{\operatorname{var}(\widehat{\theta})}.$$

Example.

- Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Then $\widehat{\mu} = \overline{X}$ and $\operatorname{var}(\widehat{\mu}) = \sigma^2/n$. So $\operatorname{SE}(\widehat{\mu}) = \sigma/\sqrt{n}$.
- Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim}$ Bernoulli(*p*). Then $\widehat{p} = \overline{X}$ and $\operatorname{var}(\widehat{p}) = p(1-p)/n$. So $\operatorname{SE}(\widehat{p}) = \sqrt{p(1-p)/n}$.

Sometimes $SE(\hat{\theta})$ depends on θ itself, meaning that $SE(\hat{\theta})$ is unknown. In such cases we have to plug-in parameter estimates to get the *estimated* standard error. E.g. plug-in to get estimated standard errors $SE(\overline{X}) = \hat{\sigma}/\sqrt{n}$ and $SE(\hat{p}) = \sqrt{\hat{p}(1-\hat{p})/n}$.

The values plugged-in ($\hat{\sigma}$ and \hat{p} above) could be maximum likelihood, or other, estimates.

(We could write $\widehat{SE}(\hat{p})$, i.e. with a hat on the SE, to denote that \hat{p} has been plugged-in, but this is ugly so we won't, we'll just write $SE(\hat{p})$.)

If $\hat{\theta}$ is unbiased, then $MSE(\hat{\theta}) = var(\hat{\theta}) = [SE(\hat{\theta})]^2$. So the standard error (or estimated standard error) gives some quantification of the accuracy of estimation.

If in addition $\hat{\theta}$ is approximately $N(\theta, SE(\hat{\theta})^2)$ then, by the arguments used above, an approximate $1 - \alpha$ CI for θ is given by $(\hat{\theta} \pm z_{\alpha/2} SE(\hat{\theta}))$ where again we might need to plug-in to obtain the estimated standard error. Since, roughly, $z_{0.025} = 2$ and $z_{0.001} = 3$,

(estimate \pm 2 estimated std errors) is an approximate 95% CI (estimate \pm 3 estimated std errors) is an approximate 99.8% CI.

The CLT justifies the normal approximation for $\hat{\theta} = \overline{X}$, but $\hat{\theta} \approx N(\theta, SE(\hat{\theta})^2)$ is also appropriate for more general MLEs by other theory (see Part A).

Example. Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with μ and σ^2 unknown.

The MLEs are $\hat{\mu} = \overline{X}$, $\hat{\sigma}^2 = \frac{1}{n} \sum (X_i - \overline{X})^2$, and $SE(\hat{\mu}) = \sigma/\sqrt{n}$ is unknown because σ is unknown. So to use $\hat{\mu} \pm z_{\alpha/2} SE(\hat{\mu})$ as the basis for a confidence interval we need to estimate σ . One possibility is to use $\hat{\sigma}$ and so get the interval

$$\left(\widehat{\mu} \pm z_{\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}\right).$$

However we can improve on this:

- (i) use *s* (the sample standard deviation) instead of $\hat{\sigma}$ (better as $E(S^2) = \sigma^2$ whereas $E(\hat{\sigma}^2) < \sigma^2$)
- (ii) use a critical value from a *t*-distribution instead of $z_{\alpha/2}$ see Part A Statistics (better as $(\overline{X} \mu)/(S/\sqrt{n})$ has a *t*-distribution, exactly, whereas using the CLT is an approximation).

6 Linear Regression

Suppose we measure two variables in the same population:

- *x* the *explanatory* variable
- *y* the *response* variable.

Other possible names for *x* are the *predictor* or *feature* or *input variable* or *independent variable*. Other possible names for *y* are the *output variable* or *dependent variable*.

Example. Let x measure the GDP per head, and y the CO₂ emissions per head, for various countries.

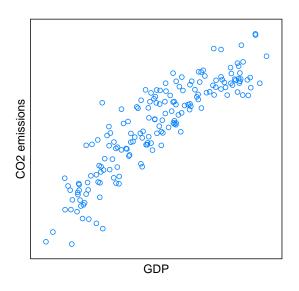


Figure 6.1. Scatterplot of measures of CO₂ emissions per head against GDP per head, for 178 countries.

Questions of interest:

For fixed *x*, what is the average value of *y*?

How does that average value change with *x*?

A simple model for the dependence of y on x is

$$y = \alpha + \beta x +$$
 "error".

Note: a linear relationship like this does not necessarily imply that *x* causes *y*.

More precise model

We regard the values of x as being fixed and known, and we regard the values of y as being the observed values of random variables.

We suppose that

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, \dots, n \tag{6.1}$$

where

$$x_1, \ldots, x_n$$
 are known constants
 $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. $N(0, \sigma^2)$ "random errors"
 α, β are unknown parameters.

The "random errors" $\epsilon_1, \ldots, \epsilon_n$ represent random scatter of the points (x_i, y_i) about the line $y = \alpha + \beta x$, we do not expect these points to lie on a perfect straight line.

Sometimes we will refer to the above model as being $Y = \alpha + \beta x + \epsilon$.

Note.

- 1. The values y_1, \ldots, y_n (e.g. the CO₂ emissions per head in the various countries) are the observed values of random variables Y_1, \ldots, Y_n .
- 2. The values x_1, \ldots, x_n (e.g. the GDP per head in the various countries) do *not* correspond to random variables. They are *fixed* and *known* constants.

Questions:

- How do we estimate α and β ?
- Does the mean of *Y* actually depend on the value of *x*? i.e. is $\beta \neq 0$?

We now find the MLEs of α and β , and we regard σ^2 as being known. The MLEs of α and β are the same if σ^2 is unknown. If σ^2 is unknown, then we simply maximise over σ^2 as well to obtain its MLE – this is no harder than what we do here (try it!). However, working out all of the properties of this MLE *is* harder and beyond what we can do in this course.

From (6.1) we have $Y_i \sim N(\alpha + \beta x_i, \sigma^2)$. So Y_i has p.d.f.

$$f_{Y_i}(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \alpha - \beta x_i)^2\right), \quad -\infty < y_i < \infty.$$

So the likelihood $L(\alpha, \beta)$ is

$$L(\alpha,\beta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \alpha - \beta x_i)^2\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \alpha - \beta x_i)^2\right)$$

with log-likelihood

$$\ell(\alpha,\beta) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2.$$

So *maximising* $\ell(\alpha, \beta)$ over α and β is equivalent to *minimising* the sum of squares

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2.$$

For this reason the MLEs of α and β are also called *least squares estimators*.

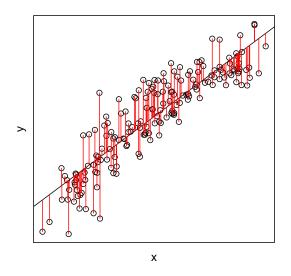


Figure 6.2. Vertical distances from the points (x_i, y_i) to the line $y = \alpha + \beta x$. $S(\alpha, \beta)$ is the sum of these squared distances. The MLEs/least squares estimates of α and β minimise this sum.

Theorem 6.1. *The MLEs (or, equivalently, the least squares estimates) of* α *and* β *are given by*

$$\widehat{\alpha} = \frac{(\sum x_i^2)(\sum y_i) - (\sum x_i)(\sum x_iy_i)}{n \sum x_i^2 - (\sum x_i)^2}$$
$$\widehat{\beta} = \frac{n \sum x_iy_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}.$$

The sums in Theorem 6.1, and similar sums below, are from i = 1 to n.

Proof. To find $\widehat{\alpha}$ and $\widehat{\beta}$ we calculate

$$\frac{\partial S}{\partial \alpha} = -2 \sum (y_i - \alpha - \beta x_i)$$
$$\frac{\partial S}{\partial \beta} = -2 \sum x_i (y_i - \alpha - \beta x_i)$$

Putting these partial derivatives equal to zero, the minimisers $\hat{\alpha}$ and $\hat{\beta}$ satisfy

$$n\widehat{\alpha} + \widehat{\beta} \sum x_i = \sum y_i$$
$$\widehat{\alpha} \sum x_i + \widehat{\beta} \sum x_i^2 = \sum x_i y_i.$$

Solving this pair of simultaneous equations for $\hat{\alpha}$ and $\hat{\beta}$ gives the required MLEs.

Note. Sometimes we consider the model

$$Y_i = a + b(x_i - \overline{x}) + \epsilon_i, \quad i = 1, \dots, n$$

and find the MLEs of *a* and *b* by minimising $\sum (y_i - a - b(x_i - \overline{x}))^2$. This model is just an alternative parametrisation of our original model: the first model is

$$Y = \alpha + \beta x + \epsilon$$

and the second is

$$Y = a + b(x - \overline{x}) + \epsilon$$
$$= (a - b\overline{x}) + bx + \epsilon.$$

Here *Y*, *x* denote general values of *Y*, *x* (and $\overline{x} = \frac{1}{n} \sum x_i$ is the mean of the *n* data values of *x*). Comparing the two model equations, $b = \beta$ and $a - b\overline{x} = \alpha$.

The interpretation of the parameters is that $\beta = b$ is the increase in E(Y) when x increases by 1. The parameter α is the value of E(Y) when x is 0; whereas a is the value of E(Y) when x is \overline{x} .

• Alternative expressions for $\hat{\alpha}$ and $\hat{\beta}$ are

$$\widehat{\beta} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$
(6.2)

$$=\frac{\sum(x_i - \overline{x})y_i}{\sum(x_i - \overline{x})^2}$$
(6.3)

$$\widehat{\alpha} = \overline{y} - \widehat{\beta} \, \overline{x}$$

The above alternative for $\hat{\alpha}$ follows directly from $\frac{\partial S}{\partial \alpha} = 0$.

To obtain the alternatives for $\hat{\beta}$: Theorem 6.1 gives

$$\widehat{\beta} = \frac{\sum x_i y_i - \frac{1}{n} (\sum x_i) (\sum y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$
$$= \frac{\sum x_i y_i - n\overline{x} \overline{y}}{\sum x_i^2 - n\overline{x}^2}.$$
(6.4)

Now check that the numerators and denominators in (6.2) and (6.4) are the same. Then observe that the numerators of (6.2) and (6.3) differ by $\sum (x_i - \overline{x})\overline{y}$, which is 0.

• The *fitted* regression line is the line $y = \hat{\alpha} + \hat{\beta}x$. The point $(\overline{x}, \overline{y})$ always lies on this line.

6.1 Properties of regression parameter estimators

Bias

Let $w_i = x_i - \overline{x}$ and note $\sum w_i = 0$.

From (6.3) the maximum likelihood *estimator* of β is

$$\widehat{\beta} = \frac{1}{\sum w_i^2} \left(\sum w_i Y_i \right)$$

so

$$E(\widehat{\beta}) = \frac{1}{\sum w_i^2} E\left(\sum w_i Y_i\right)$$
$$= \frac{1}{\sum w_i^2} \sum w_i E(Y_i).$$

Note $E(Y_i) = \alpha + \beta x_i = \alpha + \beta \overline{x} + \beta w_i$ (using $x_i = w_i + \overline{x}$), and so

$$E(\widehat{\beta}) = \frac{1}{\sum w_i^2} \sum w_i (\alpha + \beta \overline{x} + \beta w_i)$$
$$= \frac{1}{\sum w_i^2} \left[(\alpha + \beta \overline{x}) \sum w_i + \beta \sum w_i^2 \right]$$
$$= \beta \qquad \text{since } \sum w_i = 0.$$

Also $\widehat{\alpha} = \overline{Y} - \widehat{\beta} \, \overline{x}$ and so

$$E(\widehat{\alpha}) = E(\overline{Y}) - \overline{x}E(\widehat{\beta})$$

= $\frac{1}{n} \sum E(Y_i) - \beta \overline{x}$ since $E(\widehat{\beta}) = \beta$
= $\frac{1}{n} \sum (\alpha + \beta x_i) - \beta \overline{x}$
= $\frac{1}{n} \cdot n(\alpha + \beta \overline{x}) - \beta \overline{x}$
= α .

So $\widehat{\alpha}$ and $\widehat{\beta}$ are unbiased.

Note the unbiasedness of $\hat{\alpha}$, $\hat{\beta}$ does not depend on the assumptions that the ϵ_i are independent, normal and have the same variance, only on the assumptions that the errors are additive and $E(\epsilon_i) = 0$.

Variance

We are usually only interested in the variance of $\hat{\beta}$:

$$\operatorname{var}(\widehat{\beta}) = \operatorname{var}\left(\frac{\sum w_i Y_i}{\sum w_i^2}\right)$$
$$= \frac{1}{(\sum w_i^2)^2} \operatorname{var}\left(\sum w_i Y_i\right)$$
$$= \frac{1}{(\sum w_i^2)^2} \sum w_i^2 \operatorname{var}(Y_i)$$
$$= \frac{1}{(\sum w_i^2)^2} \sum w_i^2 \sigma^2$$
$$= \frac{\sigma^2}{\sum w_i^2}.$$

Since $\hat{\beta}$ is a linear combination of the independent normal random variables Y_i , the estimator $\hat{\beta}$ is itself normal: $\hat{\beta} \sim N(\beta, \sigma_{\beta}^2)$ where $\sigma_{\beta}^2 = \sigma^2 / \sum w_i^2$.

So the standard error of $\hat{\beta}$ is σ_{β} and if σ^2 is known, then a 95% CI for β is

$$(\widehat{\beta} \pm 1.96\sigma_{\beta}).$$

However, this is only a valid CI when σ^2 is known and, in practice, σ^2 is rarely known.

For σ^2 unknown we need to plug-in an estimate of σ^2 , i.e. use $\hat{\sigma}_{\beta}^2 = \hat{\sigma}^2 / \sum w_i^2$ where $\hat{\sigma}^2$ is some estimate of σ^2 . For example we could use the MLE which is $\hat{\sigma}^2 = \frac{1}{n} \sum (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$. Using the $\hat{\theta} \pm 2 \operatorname{SE}(\hat{\theta})$ approximation for a 95% confidence interval, we have that $(\hat{\beta} \pm 2\hat{\sigma}_{\beta})$ is an approximate 95% confidence interval for β .

[A better approach here, but beyond the scope of this course, is to estimate σ^2 using

$$s^2 = \frac{1}{n-2} \sum (y_i - \widehat{\alpha} - \widehat{\beta} x_i)^2$$

and to base the confidence interval on a *t*-distribution rather than a normal distribution. This estimator S^2 is unbiased for σ^2 (see Sheet 5), but details about its distribution and the *t*-distribution are beyond this course – see Parts A/B.]

7 Multiple Linear Regression

For the material in the last two sections of these notes (this section and the next), Chapter 3 of the book *An Introduction to Statistical Learning* by James, Witten, Hastie and Tibshirani (2013) is useful – we cover some, but not all, of the material in that chapter. The whole book is freely available online at:

http://www-bcf.usc.edu/~gareth/ISL/

We'll refer to this book as JWHT (2013).

Example (Hill races). Let Y = time, $x_1 = \text{distance}$, $x_2 = \text{climb}$.

We can consider a model in which Y depends on both x_1 and x_2 , of the form

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

This model has one response variable Y (as usual), but now we have *two* explanatory variables x_1 and x_2 , and *three* regression parameters β_0 , β_1 , β_2 .

Let the *i*th race have time y_i , distance x_{i1} and climb x_{i2} . Then in more detail our model is

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, \quad i = 1, ..., n$$

where

 x_{i1} , x_{i2} , for i = 1, ..., n, are known constants

$$\epsilon_1, \dots, \epsilon_n \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

 $\beta_0, \beta_1, \beta_2$ are unknown parameters

and (as usual) y_i denotes the observed value of the random variable Y_i .

As for simple linear regression we obtain the MLEs/least squares estimates of β_0 , β_1 , β_2 by minimising

$$S(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2})^2$$

with respect to $\beta_0, \beta_1, \beta_2$, i.e. by solving $\frac{\partial S}{\partial \beta_k} = 0$ for k = 0, 1, 2.

As before, the only property of the ϵ_i needed to define the least squares estimates is $E(\epsilon_i) = 0$.

A general multiple regression model has *p* explanatory variables (x_1, \ldots, x_p) ,

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

and the MLEs/least squares estimates are obtained by minimising

$$\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$$

with respect to $\beta_0, \beta_1, \dots, \beta_p$. In this course we will focus on p = 1 or 2.

Example (Quadratic regression). The relationship between *Y* and *x* may be approximately quadratic in which case we can consider the model $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$. This is the case p = 2 with $x_1 = x$ and $x_2 = x^2$.

Example. For convenience write the two explanatory variables as *x* and *z*. So suppose

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \epsilon_i, \quad i = 1, \dots, n$$

where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ and assume $\sum x_i = \sum z_i = 0$.

Then minimising $S(\beta)$ gives

$$\widehat{\beta}_{0} = \frac{\sum y_{i}}{n}$$

$$\widehat{\beta}_{1} = \frac{1}{\Delta} \left(\sum z_{i}^{2} \sum x_{i}y_{i} - \sum x_{i}z_{i} \sum z_{i}y_{i} \right)$$

$$\widehat{\beta}_{2} = \frac{1}{\Delta} \left(\sum x_{i}^{2} \sum z_{i}y_{i} - \sum x_{i}z_{i} \sum x_{i}y_{i} \right)$$

$$\Delta = \sum x_{i}^{2} \sum z_{i}^{2} - \left(\sum x_{i}z_{i} \right)^{2}.$$

where

$$\Delta = \sum x_i^2 \sum z_i^2 - \left(\sum x_i z_i\right)^{-}.$$

The method (solving $\frac{\partial S}{\partial \beta_k} = 0$ for k = 0, 1, 2, i.e. 3 equations in 3 unknowns) is straightforward, the algebra less so – the are more elegant ways to do some of this (using matrices, in 3rd year).

Interpretation of regression coefficients

Consider the model with p = 2, so two regressors x_1 and x_2 :

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

We interpret β_1 as the average effect on Y of a one unit increase in x_1 , holding the other regressor x_2 fixed.

Similarly we interpret β_2 as the average effect on *Y* of a one unit increase in x_2 , *holding the other regressor* x_1 *fixed*.

In these interpretations "average" means we are talking about the change in E(Y) when changing x_1 (or x_2).

One important thing to note here is that x_1 and x_2 often change together. E.g. in the hill races example, a race whose distance is one mile greater will usually to have an increased value of climb as well. This makes interpretation more difficult.

8 Assessing the fit of a model

Having fitted a model, we should consider how well it fits the data. A model is normally an approximation to reality: is the approximation sufficiently good that the model is useful? This question applies to mathematical models in general. In this course we will approach the question by considering the fit of a simple linear regression (generalisations are possible).

For the model $Y = \alpha + \beta x + \epsilon$ let $\hat{\alpha}$, $\hat{\beta}$ be the usual estimates of α , β based on the observation pairs $(x_1, y_1), \ldots, (x_n, y_n)$.

From now on we consider this model, with the usual assumptions about ϵ , unless otherwise stated.

Definition. The *i*th *fitted value* \hat{y}_i of Y is defined by $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$, for i = 1, ..., n.

The *i*th *residual* e_i is defined by $e_i = y_i - \hat{y}_i$, for i = 1, ..., n.

The residual sum of squares RSS is defined by RSS = $\sum e_i^2$.

The *residual standard error* RSE is defined by RSE = $\sqrt{\frac{1}{n-2}}$ RSS.

The RSE is an estimate of the standard deviation σ . If the fitted values are close to the observed values, i.e. $\hat{y}_i \approx y_i$ for all *i* (so that the e_i are small), then the RSE will be small. Alternatively if one or more of the e_i is large then the RSE will be higher.

We have $E(e_i) = 0$. In taking this expectation, we treat y_i as the random variable Y_i , and we treat \hat{y}_i as the random variable $\hat{\alpha} + \hat{\beta} x_i$ (in particular, $\hat{\alpha}$ and $\hat{\beta}$ are estimators, not estimates). Hence

$$E(e_i) = E(Y_i - \widehat{\alpha} - \widehat{\beta}x_i)$$

= $E(Y_i) - E(\widehat{\alpha}) - E(\widehat{\beta})x_i$
= $E(\alpha + \beta x_i + \epsilon_i) - \alpha - \beta x_i$ since $\widehat{\alpha}, \widehat{\beta}$ are unbiased
= $\alpha + \beta x_i + E(\epsilon_i) - \alpha - \beta x_i$
= 0 since $E(\epsilon_i) = 0$.

8.1 Potential problem: non-linearity

The model $Y = \alpha + \beta x + \epsilon$ assumes a straight-line relationship between *Y* (the response) and *x* (the predictor). If the true relationship is far from linear then any conclusions (e.g. predictions) we draw from the fit will be suspect.

A *residual plot* is a useful graphical tool for identifying non-linearity: for simple linear regression we can plot the residuals e_i against the fitted values \hat{y}_i . Ideally the plot will show no pattern. The existence of a pattern may indicate a problem with some aspect of the linear model.

Note that for simple linear regression (i.e. the case p = 1) plotting e_i against x_i gives an equivalent plot, just with a different horizontal scale, since there is an exact linear relation between the x_i and \hat{y}_i (i.e. $\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$).

[Plotting e_i against \hat{y}_i generalises better to multiple regression.]

8.2 Potential problem: non-constant variance of errors

We have assumed that the errors have a constant variance, i.e. $var(Y_i) = var(\epsilon_i) = \sigma^2$. That is, the *same* variance *for all i*. Unfortunately, this is often not true. E.g. the variance of the error may increase as *Y* increases.

Non-constant variance is also called *heteroscedasticity*. We can identify this from the presence of a funnel-type shape in the residual plot.

How might we deal with non-constant variance of the errors?

- (i) One possibility is to transform the response Y using a transformation such as log Y or \sqrt{Y} (which shrinks larger responses more), leading to a reduction in heteroscedasticity.
- (ii) Sometimes we might have a good idea about of the variance of Y_i : we might think $\operatorname{var}(Y_i) = \operatorname{var}(\epsilon_i) = \frac{\sigma^2}{w_i}$ where σ^2 is unknown but where the w_i are known. E.g. if Y_i is actually the mean of n_i observations, where each of these n_i observations are made at $x = x_i$, then $\operatorname{var}(Y_i) = \frac{\sigma^2}{n_i}$. So $w_i = n_i$ in this case.

It is straightforward to show (exercise) that the MLEs of α , β are obtained by minimising

$$\sum_{i=1}^{n} w_i (y_i - \alpha - \beta x_i)^2.$$
(8.1)

The form of (8.1) is intuitively correct: if w_i is small then $var(Y_i)$ is large, so there is a lot of uncertainty about observation i, so this observation shouldn't affect the fit too much – this is achieved in (8.1) by observation i being weighted by the small value of w_i . Hence this approach is called *weighted least squares*.

8.3 Potential problem: outliers

An *outlier* is a point for which y_i is far from the value \hat{y}_i predicted by the model. Outliers can arise for a variety of reasons, e.g. incorrect recording of an observation during data collection.

Residual plots can be used to identify outliers. Recall that $E(e_i) = 0$. But in practice it can be difficult to decide how large (i.e. how far from the expected value of zero) a residual needs to be before we consider it a possible outlier. To address this we can plot *studentized residuals* instead of residuals, where

*i*th studentized residual =
$$\frac{e_i}{SE(e_i)}$$
.

Theorem 8.1. $var(e_i) = \sigma^2(1 - h_i)$ *where*

$$h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2}$$

Definition. The *i*th *studentized residual* r_i is defined by

$$r_i = \frac{e_i}{s\sqrt{1-h_i}}$$

where s = RSE is the residual standard error.

[Here we follow the terminology in the synopses and JWHT (2013) and call the r_i "studentized" residuals. Some authors call the r_i "standardized" residuals and save the word "studentized" to mean something similar but different.]

So the r_i are all on a comparable scale, each having a standard deviation of about 1. Following JWHT (2013) we will say that observations with $|r_i| > 3$ are possible outliers.

If we believe an outlier is due to an error in data collection, then one solution is to simply remove the observation from the data and re-fit the model. However, an outlier may instead indicate a problem with the model, e.g. a nonlinear relationship between Y and x, so care must be taken.

Similarly, this kind of problem could arise if we have a missing regressor, i.e. we could be using $Y = \beta_0 + \beta_1 x_1 + \epsilon$ when we should really be using $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$.

Proof of Theorem 8.1

Idea of the proof: write $e_j = \sum_j a_j Y_j$ and use

$$\operatorname{var}\left(\sum_{j}a_{j}Y_{j}\right) = \sum_{j}a_{j}^{2}\operatorname{var}(Y_{j}) = \sigma^{2}\sum_{j}a_{j}^{2}$$
(8.2)

since the Y_j are independent with $var(Y_j) = \sigma^2$ for all j. Here and below, all sums are from 1 to n.

First recall

$$\widehat{\beta} = \frac{\sum_{j} (x_j - \overline{x}) Y_j}{S_{xx}}$$
 where $S_{xx} = \sum_{k} (x_k - \overline{x})^2$

and

$$\begin{aligned} \widehat{\alpha} &= \overline{Y} - \widehat{\beta} \,\overline{x} \\ &= \frac{1}{n} \bigg(\sum_{j} Y_{j} \bigg) - \overline{x} \bigg(\frac{\sum_{j} (x_{j} - \overline{x}) Y_{j}}{S_{xx}} \bigg) \\ &= \sum_{j} \bigg(\frac{1}{n} - \frac{\overline{x} (x_{j} - \overline{x})}{S_{xx}} \bigg) Y_{j}. \end{aligned}$$

So

$$\begin{aligned} \widehat{y}_{i} &= \widehat{\alpha} + \widehat{\beta}x_{i} \\ &= \sum_{j} \left(\frac{1}{n} - \frac{\overline{x}(x_{j} - \overline{x})}{S_{xx}}\right) Y_{j} + x_{i} \left(\frac{\sum_{j} (x_{j} - \overline{x}) Y_{j}}{S_{xx}}\right) \\ &= \sum_{j} \left(\frac{1}{n} + \frac{(x_{i} - \overline{x})(x_{j} - \overline{x})}{S_{xx}}\right) Y_{j}. \end{aligned}$$
(8.3)

We can write

$$Y_i = \sum_j \delta_{ij} Y_j \tag{8.4}$$

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Note $\delta_{ij}^2 = \delta_{ij}$ and $\sum_j \delta_{ij}^2 = \sum_j \delta_{ij} = 1$. So

$$e_i = Y_i - \widehat{\alpha} - \beta x_i$$

and using (8.3) and (8.4)

$$=\sum_{j}\left(\delta_{ij}-\frac{1}{n}-\frac{(x_i-\overline{x})(x_j-\overline{x})}{S_{xx}}\right)Y_j.$$

As the Y_i are independent, as at (8.2),

$$\begin{aligned} \operatorname{var}(e_{i}) &= \sum_{j} \left(\delta_{ij} - \frac{1}{n} - \frac{(x_{i} - \overline{x})(x_{j} - \overline{x})}{S_{xx}} \right)^{2} \operatorname{var}(Y_{j}) \\ &= \sigma^{2} \sum_{j} \left(\delta_{ij}^{2} + \frac{1}{n^{2}} + \frac{(x_{i} - \overline{x})^{2}(x_{j} - \overline{x})^{2}}{S_{xx}^{2}} - 2\frac{1}{n} \delta_{ij} \\ &- 2\frac{(x_{i} - \overline{x})(x_{j} - \overline{x})}{S_{xx}} \delta_{ij} + 2\frac{1}{n} \frac{(x_{i} - \overline{x})(x_{j} - \overline{x})}{S_{xx}} \right) \\ &= \sigma^{2} \left(1 + \frac{1}{n} + \frac{(x_{i} - \overline{x})^{2}}{S_{xx}} - \frac{2}{n} - 2\frac{(x_{i} - \overline{x})^{2}}{S_{xx}} + \frac{2}{n} \frac{(x_{i} - \overline{x})}{S_{xx}} \sum_{j} (x_{j} - \overline{x}) \right) \\ &= \sigma^{2} \left(1 - \frac{1}{n} - \frac{(x_{i} - \overline{x})^{2}}{S_{xx}} \right) \\ &= \sigma^{2} (1 - h_{i}). \quad \Box \end{aligned}$$

8.4 Potential problem: high leverage points

Outliers are observations for which the response y_i is unusual given the value of x_i . On the other hand, observations with *high leverage* have an unusual value of x_i .

Definition. The *leverage* of the *i*th observation is h_i , where

$$h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2}$$

Clearly h_i depends only on the values of the x_i (it doesn't depend on the y_i values at all). We see that h_i increases with the distance of x_i from \overline{x} .

High leverage points tend to have a sizeable impact on the regression line. Since $var(e_i) = \sigma^2(1 - h_i)$, a large leverage h_i will make $var(e_i)$ small. And then since $E(e_i) = 0$, this means that the regression line will be "pulled" close to the point (x_i, y_i) .

Note that $\sum h_i = 2$, so the average leverage is $\overline{h} = \frac{2}{n}$. One rule-of-thumb is to regard points with a leverage more than double this to be high leverage points, i.e. points with $h_i > 4/n$.

Why does this matter? We should be concerned if the regression line is heavily affected by just a couple of points, because any problems with these points might invalidate the entire fit. Hence it is important to identify high leverage observations.

SLIDES. Slide with example involving points *A* and *B* goes here.

Removing point B – which has high leverage and a high residual – has a much more substantial impact on the regression line than removing the outlier had at the end of Section 8.3.

In the plot of studentized residuals against leverage:

- point B has high leverage and a high residual, it is having a substantial effect on the regression line yet it still has a high residual
- in contrast point A has a high residual, the model isn't fitting well at A, but we saw in Section 8.3 that A isn't affecting the fit much at all the reason that A has little effect on the fit is that it has low leverage.