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Algebraic symmetries of the Riemann tensor

R(η,Z ,X ,Y ) = η
(
∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z

)
It is easy to see that R(η,Z ,X ,Y ) = −R(η,Z ,Y ,X ). From this it
follows that the Riemann tensor is antisymmetric in its last two
indices:

Rµνρσ = −Rµνσρ.



From the metric compatibility condition we also find

0 = −[∇µ,∇ν ]gρσ

= Rαρµνgασ + Rασµνgρα

= Rσρµν + Rρσµν ,

so the Riemann tensor is also antisymmetric in its first two indices.



Next consider the following expression, for some scalar field f

∇µ∇σ∇ν f +∇σ∇ν∇µf +∇ν∇µ∇σf
−∇σ∇µ∇ν f −∇µ∇ν∇σf −∇ν∇σ∇µf .

We can group these terms in two different ways: first,

∇µ ([∇σ,∇ν ]f ) +∇ν ([∇µ,∇σ]f ) +∇σ ([∇ν ,∇µ]f ) = 0.

On the other hand,

[∇σ,∇ν ]∇µf + [∇µ,∇σ]∇ν f + [∇ν ,∇µ]∇σf
=

(
Rαµνσ + Rανσµ + Rασµν

)
∇αf .

But since this holds for all scalars f , we have the first Bianchi
identity or the algebraic Bianchi identity:

Rαµνσ + Rανσµ + Rασµν = 0.



Another useful symmetry of the Riemann tensor follows from the
symmetries we already know. Using the first Bianchi identity and
cyclicly permuting indices, we have

Rµνρσ + Rµρσν + Rµσνρ = 0

−Rνρσµ − Rνσµρ − Rνµρσ = 0

−Rρσµν − Rρµνσ − Rρνσµ = 0

Rσµνρ + Rσνρµ + Rσρµν = 0.

Adding these and using antisymmetry in the first and last pair of
indices, we obtain

Rµνρσ = Rρσµν .



Summary of algebraic symmetries of the Riemann
tensor

Rµνρσ = −Rµνσρ
Rµνρσ = −Rνµρσ
Rµνρσ = Rρσµν

Rµνρσ + Rµρσν + Rµσνρ = 0.



The (second) Bianchi identity

There is also an important symmetry of the derivatives of the Riemann tensor,
called the second Bianchi identity or simply the Bianchi identity.
Consider the following expression, for some arbitrary covector η

∇µ∇ρ∇νησ +∇ρ∇ν∇µησ +∇ν∇µ∇ρησ

−∇µ∇ν∇ρησ −∇ν∇ρ∇µησ −∇ρ∇µ∇νησ.

Grouping the terms in one way we obtain

[∇µ,∇ρ]∇νησ + [∇ρ,∇ν ]∇µησ + [∇ν ,∇µ]∇ρησ

= Rα
νρµ∇αησ + Rα

σρµ∇νηα + Rα
µνρ∇αησ

+ Rα
σνρ∇µηα + Rα

ρµν∇αησ + Rα
σµν∇ρηα

=
(
Rα

µνρ + Rα
νρµ + Rα

ρµν

)
∇αησ

+ Rα
σνρ∇µηα + Rα

σρµ∇νηα + Rα
σµν∇ρηα

= Rα
σνρ∇µηα + Rα

σρµ∇νηα + Rα
σµν∇ρηα,

where we have used the first Bianchi identity.



But, grouping the same terms in an alternative way, we have

∇µ[∇ρ,∇ν ]ησ +∇ν [∇µ,∇ρ]ησ +∇ρ[∇ν ,∇µ]ησ

= ∇µ

(
Rα

σνρηα
)

+∇ν

(
Rα

σρµηα
)

+∇ρ

(
Rα

σµνηα
)

= Rα
σνρ∇µηα + Rα

σρµ∇νηα + Rα
σµν∇ρηα

+∇µR
α
σνρηα +∇νR

α
σρµηα +∇ρR

α
σµνηα.

Combining these two equations and reordering the indices a bit using the
symmetries of the Riemann tensor, we find that(

∇µR
α

νρ σ +∇νR
α

ρµ σ +∇ρR
α

µν σ

)
ηα = 0.

Since this holds for all covectors η (and since the connection is
metric-compatible), we have the second Bianchi identity

∇µRνραβ +∇νRρµαβ +∇ρRµναβ = 0.



Contractions of the Riemann tensor

Contracting a pair of indices in the Riemann tensor forms the Ricci
curvature tensor (or simply Ricci tensor), which is also
conventionally notated with the letter R:

Rµν := Rαµαν

The symmetries of the Riemann tensor imply that the Ricci tensor
is symmetric (exercise).

We can contract the indices of the Ricci tensor to form the scalar
curvature or Ricci scalar, also conventionally denoted1 by the letter
R:

R := (g−1)µνRµν

1Because of these conventional notations, when dealing with the curvature
it is particularly useful to use abstract index notation rather than index-free
notation!



The Einstein tensor

If we contract indices in the second Bianchi identity, we obtain the
identity

∇αRαµνρ −∇νRµρ +∇ρRµν = 0.

Contracting again, this time with the indices µ and ρ (and
relabelling indices and dividing by two), we obtain the contracted
Bianchi identity

∇µ
(
Rµν −

1

2
Rgµν

)
= 0.

This leads us to define the Einstein tensor:

Gµν := Rµν −
1

2
Rgµν ,

which is divergence free

∇µGµν = 0.



Curvature in terms of the metric

One final aspect of the curvature which is important is its
relationship to the metric tensor. In local coordinates xa,

[∇a,∇b]X c = Rc
dabX

d

= ∂a∇bX
c − Γd

ab∇dX
c + Γc

ad∇bX
d − (a↔ b)

= ∂a∂bX
c + ∂a

(
Γc
bdX

d
)
− Γd

ab∂dX
c + Γc

ad∂bX
d

− Γd
abΓc

deX
e + Γc

adΓd
beX

e − (a↔ b)

= (∂aΓc
bd − ∂bΓc

ad + Γc
aeΓe

bd − Γc
beΓe

ad)X d .



Hence the components of the Riemann tensor can be written in terms of
the Christoffel symbols and their derivatives:

Ra
bcd = ∂cΓa

bd − ∂dΓa
bc + Γa

ceΓe
bd − Γa

deΓe
bc .

Recalling the expression for the Christoffel symbols of the Levi-Civita
connection in terms of the metric components

Γa
bc =

1

2
(g−1)ad (∂bgcd + ∂cgbd − ∂dgbc) ,

Substituting into the previous equation, we obtain a long and not very
enlightening equation for the components of the Riemann tensor.

The important thing to notice about this expression is the following: the
Riemann tensor depends on the metric g and its first two
derivatives. In normal coordinates, only the second derivatives of the
metric survive.


