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The Einstein equations

Remember that there are many hints that matter causes spacetime
to curve, e.g. from the equivalence principle we saw that gravity
isn’t a force, and freely falling observers/test particles/particles
experiencing no forces should move along geodesics, but that in
this case geodesics cannot be ordinary straight lines.

To be consistent with special relativity, it should not be just the
matter density which affects curvature, but the energy density.
This appears in the energy-momentum tensor Tµν .



Tµν is a symmetric tensor, and it somehow has to be related to the
curvature. With this in mind, in October 1915 Einstein tried the
equation

Rµν = CTµν

for some constant C .

But there is a problem with this equation: the conservation of
energy-momentum means that the energy momentum tensor Tµν

is divergence-free1, while the divergence of the Ricci tensor
generally does not vanish in general.

1To generalise all of our arguments from Minkowski space, we would need to
understand integration on manifolds, which is beyond the scope of this course. The
upshot is that everything has the same interpretation, if we replace partial derivatives
with covariant derivatives.



By November 1915, Einstein had remedied this problem in the obvious
way:

Gµν = CTµν .

We still need to fix the constant C . This can be done by taking the weak
field limit, where we take the metric to have the form

gab = mab + εhab

in some coordinates. We then expand the Einstein equations up to first
order in ε and then compare the Einstein equations with Newtonian
gravity (see the GR2 course for the details). The upshot of this
calculation is that C = 8π. This leads to the Einstein equations (or the
Einstein field equations)

Gµν = 8πTµν .

Restoring the speed of light and Newton’s constant, this is

Gµν =
8πG

c4
Tµν .



Uniqueness of the Einstein equations

There is a sense in which the Einstein equations are “unique”.
This is given by Lovelock’s theorem (the proof of which is well
beyond the scope of this course)

Lovelock’s theorem

In four spacetime dimensions, the only tensor fields constructed
entirely from the metric tensor together with its first and second
derivatives which are symmetric and divergence-free are of the form

aGµν + bgµν

where a and b are constants.



This suggests the following alternative for the Einstein equations,
which Einstein published in 1917

Gµν + Λgµν = 8πTµν

The constant Λ in this equation is called the cosmological
constant. These equations are sometimes called the Einstein
equations with cosmological constant.

Einstein originally included the cosmological constant because,
without it, he couldn’t find cosmological solutions of the Einstein
equations which didn’t either expand or contract. When later
observations showed that the universe is expanding, Einstein called
it his “greatest mistake”. More recent observations indicate that
the cosmological constant is nonzero, but with an incredibly small
positive value: in Planck units, Λ ≈ 7.26× 10−121.



The Einstein equations as a system of PDEs

In a local system of coordinates, the Riemann curvature tensor can
be written in terms of the metric and its first two derivatives.
Hence the Einstein equations can be viewed as a second order
system of PDEs for the metric components gab.

Usually we have to supplement these equations with the equations
of motion for the matter in order to obtain a closed system of
equations. But there is a special case, called the Einstein vacuum
equations, where there is no matter present:

Gµν + Λgµν = 0.



In Newtonian gravity, when there is no matter present, the
gravitational potential φ vanishes and there are no dynamics. The
situation is very different in GR: the Einstein vacuum equations
have many nontrivial solutions!



How do we solve these equations, in general? As with other second
order PDEs, it depends on the character: are they

elliptic like the Laplace equation,

parabolic like the heat equation,

hyperbolic like the wave equation?

Unfortunately, the Einstein equations are not of any specific type.
What’s more, if we try to view these equations as evolution
equations, e.g. specifying the metric components gab and their
time derivatives everywhere on some initial time surface, then we
find that there is no unique solution. Disaster!



What went wrong? Remember that we are viewing the equations
as a system of PDEs for the components of the metric gab in some
coordinate system xa. Suppose that gab is a solution to the
Einstein equations. But now consider another coordinate system
ya

′
, which agrees with the coordinate system xa in a

neighbourhood of the initial hypersurface.

The metric in these coordinates has components g ′a′b′ , which agree
with the components gab in a neighbourhood of the initial surface,
but which will generally differ away from this neighbourhood. So
there is no chance of a unique solution!



Initial data for the metric is given on the bottom surface, and we try
to solve ‘upwards’. One solution to the Einstein equations, which agrees
with this initial data, is given by the metric gab. Another metric is given
by g ′

a′b′ , whose components agree with the components of gab on the
initial hypersurface and for some amount of ‘time’, but then disagree at
later times. However, they only differ by a coordinate transformation, so

g ′
a′b′ = ∂xa

∂ya′
∂xb

∂xb′ gab, where xa = y a near the initial hypersurface. Since the

Einstein equations are invariant under coordinate transformations, both gab
and ga′b′ are solutions to the Einstein equations – so the solutions cannot
be unique!



If gab solves the Einstein equations, then so does g ′
a′b′ , so we can’t have

uniqueness. But the solution is obvious: we must choose a way of
uniquely specifying coordinates.

One convenient choice is to choose the coordinate functions to satisfy
wave equations (“wave coordinates”), in which case the Einstein
equations become a system of nonlinear wave equations. Now we see
that the Einstein equations are hyperbolic, and we can solve the Cauchy
problem: pose initial data on some initial hypersurface, and then use the
Einstein equations to evolve this data into the future.

Amazingly, it wasn’t until almost 40 years after the Einstein equations
were published when these issues were fully understood and solved (by
Choquet-Bruhat in 1952). Although the details of these calculations are
not necessary for our purposes, this point of view – viewing the Einstein
equations as a system of evolution equations – is crucial both for a
rigorous approach to GR, and for numerical GR.



Other physical laws in curved spacetimes

Point particles

The kinematics of point particles is governed by the geodesic
postulate: massive “test particles” move along timelike geodesics
in the absence of external forces. In general, however, we should
avoid working with point masses in general relativity:

taking some matter with a fixed mass and squeezing it into a
smaller and smaller volume, GR predicts that at some point it
will form a black hole, not a point mass!

The energy-momentum of the particle should be included on
the right hand side of the Einstein equations (“back
reaction”), and so it will affect the metric and hence
geodesics.

For these reasons, “test particles” in GR really just mean things
following timelike geodesics. Sometimes we will talk about
massless test particles – these just follow null geodesics.



Other physical laws

At any point p on the manifold, we can choose to work in normal
coordinates at p. In this case, at p,

the metric components are the same as the Minkowski metric
components, and

the Christoffel symbols vanish, so partial derivatives and
(first) covariant derivatives are the same.

This means that, if we work in normal coordinates, then close to
the point p physics should look like physics in Minkowski space.



As an example, consider Maxwell’s equations, which can be written
(in inertial coordinates) in special relativity as

∂aFbc + ∂bFca + ∂cFab = 0

(m−1)ab∂aFbc = 0.

These equations should take an identical form form in normal
coordinates at the point p. But, in normal coordinates, these
equations are equivalent to

∇aFbc +∇bFca +∇cFab = 0

(g−1)ab∇aFbc = 0.

But now, these equations equate the components of one tensor to
another, so the tensors themselves must be equal. Hence we can
write them using abstract indices

∇µFνρ +∇νFρµ +∇ρFµν = 0

∇µFµν = 0



In general, to generalise a physical law from special relativity to
general relativity, we should

1 express the physical law in terms of tensors in Minkowski
space,

2 replace all partial derivatives with covariant derivatives, and

3 replace the Minkowski metric m with the metric g .

The principle that all physical laws should be expressed as tensorial
equations, encapsured by these rules, is sometimes called the
principle of covariance.

Note that the equations of motion will couple to the Einstein
equations via the energy-momentum tensor – so typically you have
to solve the Einstein equations and the matter equations of motion
simultaneously.


