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Now we know the Einstein equations, it’s time to look at some
solutions.

One solution, with Λ = 0 and Tµν = 0, is Minkowski space (in
fact, here Rµνρσ = 0).

What other solutions are there? One way to generate these is to
solve the initial value problem, but this often does not lead to
explicit solutions.



An alternative approach is to look for explicit solutions which are
highly symmetric. The first success of this approach came just one
year after the Einstein equations were published, with the discovery
of the Schwarzschild solution.



This is a solution to the Einstein vacuum equations without a
cosmological constant, i.e. Gµν = 0. It is static, spherically
symmetric and asymptotically flat. This means that we can write
the metric in coordinates (t, r , θ, φ), where

1 the components of the metric are independent of t.
(stationarity).

2 The metric is also invariant under t 7→ −t (staticity).

3 The components of the metric are invariant under a family of
transformations that can be parametrised by SO(3) matrices,
whose orbits are topological spheres (spherical symmetry).

4 As r →∞, the metric components approach1 the components
of the Minkowski metric written in spherical polar coordinates
(asymptotic flatness).

1Asymptotic flatness actually requires that the metric approaches the
Minkowski metric at a certain rate, but there are various possible rates and we
will not go into the messy details here.



What is the difference between “stationary” (metric components
independent of t) and “static” (stationary, and metric invariant
under t 7→ −t)?

Consider the two dimensional metric

g = −dtdθ

This is stationary but not static.

For a more physical example, consider sphere rotating at a constant
speed in an otherwise empty universe. This situation is stationary:
it looks the same at all points in time. But if we reverse the
direction of time, then the sphere rotates in the opposite direction!



Birkhoff’s theorem

A uniqueness/rigidity result:

Birkhoff’s theorem

Every spherically symmetric solution to the Einstein vacuum
equations is locally isometric to either Schwarzschild spacetime or
to Minkowski space.

This theorem is important because it means that the Schwarzschild
metric characterises spacetime outside of any spherically symmetric
matter distribution, regardless of the interior structure of the
matter (e.g. the density profile of some fluid). In this case, the
metric will not agree with the Schwarzschild metric inside the
matter distribution (where Tµν 6= 0), where the metric will
generally depend on the specific details of the matter.



The metric

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
here M > 0 is a constant (called the mass), and the ranges of the
coordinates are as follows:

t ∈ R
0 < θ < π

0 < φ < 2π

For now, 2M < r <∞. For example, we might be considering
the region outside a spherically symmetric star, where the
radius of the star is much larger2 than 2M.

2Modelling the sun as spherically symmetric, the surface r = 2M is around
1km from its centre – well inside the region where there is matter. For the
Earth, this surface is around 1cm from the centre!



Checking that this metric is actually a solution to the Einstein
equations is extremely tedious, but it is a calculation that everyone
should do at one point in their lives (and then never again!).

There are well-understood degeneracies in the metric at θ = 0, π
and also at φ = 0, 2π. These, of course, are the usual coordinate
issues with the sphere, and reflect the fact that, technically, we
need to use two coordinate charts to cover the whole space. On
the other hand, something odd is clearly going on with the metric
at r = 0 and at r = 2M. We’ll return to this point later.



Gravitational redshift

Two observers, Alice and Bob, move along integral curves of the vector
field ∂t , at two different radii but with the same angular coordinates.
Their worldlines, parametrised by the coordinate t, are

Alice: (t, rA, θ0, φ0)

Bob: (t, rB , θ0, φ0)

where θ0 and φ0 are constants, and 2M < rA < rB .

Alice sends Bob regular signals, using light rays. Light rays travel along
null geodesics, which we can also parametrise by the coordinate time t.
Since these are null radial lines,

0 = gab
dxa

dt

dxb

dt

= −
(

1− 2M

r

)
+

(
1− 2M

r

)−1(
dr

dt

)2

⇒ dr

dt
=

(
1− 2M

r

)
.



Integrating from r = rA when t = tA, to r = rB when t = tB , we
find ∫ rB

rA

(
1− 2M

r

)−1

dr = tA − tB .

Importantly, the coordinate time difference tA − tB is itself is a
constant, independent of the initial time when the signal was
transmitted (you could just read this off directly from the fact that
the metric is stationary). So, if Alice sends repeated signals at
(coordinate) time intervals ∆t, then they will be received by Bob
at (coordinate) time intervals ∆t.



Remember that t is just a coordinate, and has no intrinsic meaning. The
physical quantity is the proper time.
Along a worldline where r , θ, φ are constants, we calculate

−1 = gab
dxa

dτ

dxb

dτ

= −
(

1− 2M

r

)(
dt

dτ

)2

⇒ dt

dτ
=

(
1− 2M

r

)− 1
2

.

So, along Alice and Bob’s worldlines, differences in proper times satisfy

∆τA/B =

(
1− 2M

rA/B

) 1
2

∆t,

and the ratio of the emission frequency to the received frequency is

∆τB
∆τA

=

(
1− 2M

rB

) 1
2

(
1− 2M

rA

) 1
2

.



Since rB > rA, ∆τB > ∆τA. So less time passes for Alice than for
Bob: Bob receives the signals at a lower frequency than the
emitted frequency. Clocks run slower in a gravitational field. This
is gravitational redshift. Note that, as rA → 2M the ratio of
frequencies tends to infinity – a kind of infinite redshift, which we
will interpret later.



∆τB > ∆τA: Bob receives signals from Alice at a slower rate than they
are emitted.


