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We’ll use a Lagrangian approach to derive the geodesics. Provided
we parametrise by an affine parameter, we can take the Lagrangian
to be

L = gab
dxa

dλ

dxb

dλ

= −
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2,

where the ‘dots’ represent derivatives with respect to some affine
parameter λ.



Conserved quantities

With Lagrangians, it’s always a good idea to start with conserved
quantities.

Since the Lagrangian is independent of t, we have the conserved
‘energy’

E := −1

2

∂L

∂ ṫ

=

(
1− 2M

r

)
ṫ.



Similarly, the Lagrangian is independent of φ, so we have the
conserved angular momentum about the z axis

Ω :=
1

2

∂L

∂φ̇

= r2 sin2 θφ̇.



The Lagrangian itself is constant: in the timelike case (i.e. for a
massive particle) we can choose the affine parameter λ to be the
proper time τ , while in the spacelike case we can choose the proper
distance s, and so we have

−
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2 = −K

=

{
−1 (timelike)

0 (null).



Finally, we can use spherical symmetry to rotate the manifold so
that the particle moves only in the equatorial plane θ = π

2 . To be
more precise: we can use the SO(3) isometries to rotate so that
the particle

is initially in the equatorial plane,

has initial velocity tangent to this plane

Then the equation of motion for θ is

d

dλ

(
r2θ̇
)
− r2 sin θ cos θφ̇2 = 0

⇒ r2θ̈ + 2r ṙ θ̇ − r2 sin θ cos θφ̇2 = 0.

So, if θ
∣∣
λ=0

= π
2 and θ̇

∣∣
λ=0

= 0, we have θ̈
∣∣
λ=0

= 0. From this it
follows that θ = π

2 always, since θ ≡ π
2 solves the ODE with the

correct initial conditions.



Putting this all together, we find the evolution equation for the r
coordinate (

1− 2M

r

)−1
ṙ2 +

Ω2

r2
+ K =

(
1− 2M

r

)−1
E 2

⇒ 1

2
ṙ2 +

Ω2

2r2

(
1− 2M

r

)
− MK

r
=

E 2 − K

2
.

This is the equation of motion of a particle with energy
1
2(E 2 − K ), moving in an effective potential

V (r) = −MK

r
+

Ω2

2r2
− Mm2

r3
.



Timelike geodesics

In this case K = 1 and the effective potential is

V (r) = −M

r
+

Ω2

2r2
− MΩ2

r3
.

The first term is the Newtonian gravitational potential and the
second term is the angular momentum barrier. The third term is
new and does not appear in Newtonian theory.
At large r , V ∼ −Mr−1, and at r = 2M, V = −1

2 (remember that
we are only working in the region r > 2M for now).
The extrema of the potential are at

V ′ = 0⇒ r =
Ω2

2M

(
1±

√
1− 12

M2

Ω2

)
so if Ω >

√
12M there are two local extrema, at Ω =

√
12M these

two extrema collide (leaving a single inflection point), and at
Ω <

√
12M there are no real extrema.



The effective potential in a Schwarzschild spacetime, for various values of
the conserved angular momentum Ω.



Timelike circular orbits

Circular orbits have ṙ = 0 and r̈ = 0 – the latter means that we
must be at a local extrema of the effective potential.

Labelling these extrema by r− and r+, with r+ > r−, we find that
the extrema at r− is always unstable (i.e. it is a local maximum)
while that at r = r+ is stable. The innermost (marginally) stable
circular orbit (ISCO) is obtained when Ω =

√
12M, when r = 6M.

The energy of these orbits can be calculated: e.g. for a stable
circular orbit,

E 2 − 1

2
= V (r+).



Bound orbits

If Ω >
√

12M then there are bound orbits which are not circular.
These have energies satisfying V (r+) < E2−1

2 < 0.

Bound orbits in Schwarzschild.



Unbound orbits

If Ω >
√

12M then there are also unbound orbits, which have
energies satisfying E 2 ≥ 1.

For smaller angular momentums (Ω ≤
√

12M) the situation is
interesting: in this regime there is no local maximum of the
effective potential. As before, there are unbound orbits (with
E 2 ≥ 1) – but these orbits will only reach infinity if they are
outgoing initially. All other orbits – that is, orbits with E 2 < 1 or
with ṙ < 0 initially – will eventually reach the surface r = 2M.



Unbound orbits in Schwarzschild.


