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What happens at r = 2M?

So far we have resolutely stuck to the region r > 2M. This is fine
so long as we are looking at spherically symmetric stars or planets,
in which matter modifies the geometry or sufficiently small r . But
what if there is no matter there? The Schwarzschild solution is still
a solution to the vacuum Einstein equations, so sooner or later we
have to understand what’s going on at r = 2M.



Recall that the Schwarzschild metric is

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
There are several places where something goes funny with this
expression for the metric. At r = 2M the first component vanishes
and the second term becomes infinite. At r = 0 all of the
components vanish except for the first one, which becomes infinite.
Also, at θ = 0, π the dφ2 component vanishes. Technically, there is
also something slightly unusual going on at φ = 0, 2π. Since we
are supposed to cover a manifold by open sets which are then
mapped onto Rn, these points are not covered by our chart.



The fact that the metric degenerates on the axis θ = 0, π doesn’t
mean that there is some kind of physical singularity there – after
all, exactly the same thing happens in flat space when it’s written
in spherical polar coordinates!

At the poles, nothing is wrong with the metric, but that there is
something wrong with the coordinates. If we change to different
coordinates – for example, changing to polar coordinates with a
different pole, or to rectangular coordinates – then these points
appear totally normal.

Could something similar be happening at the other places where
the metric is problematic, at r = 2M and at r = 0?



The Kretschmann tensor

We can obtain hints of what might be going on my looking at
scalar quantities, since these are independent of the coordinates.

We cannot take contractions of the metric itself: (g−1)µνgµν = 4,
which doesn’t tell us anything. We also can’t construct tensors out
of the Christoffel symbols, so our only real choice is the curvature.

The scalar curvature R doesn’t work, since the Schwarzschild
metric solves the Einstein vacuum equations:

Rµν −
1

2
Rgµν = 0

⇒ R − 2R = 0⇒ R = 0

(hence the Einstein vacuum equations are equivalent to Rµν = 0.)



There is a scalar that can be built out of the curvature tensor that
can be useful for our purposes, called the Kretschmann scalar
RµνρσR

µνρσ. In the Schwarzschild metric, this has the value

RµνρσR
µνρσ =

12M2

r6

So in a coordinate-independent sense, the curvature is finite at
r = 2M but infinite at r = 0. This suggests that r = 2M might be
an ordinary surface in spacetime – not a singularity – but r = 0
might represent a real singularity.



We shouldn’t be too hasty to jump to conclusions based on the
Kretschmann scalar, for two reasons:

First, even if the curvature blows up, this does not necessarily
mean that spacetime is coming to an end in some kind of
singularity (see weak solutions of PDEs and impulsive
gravitational waves.

There are kinds of “singularities” where the curvature is
completely finite, but where the spacetime comes to an end
for global rather than local reasons. These are called Cauchy
horizons, and they occur inside rotating black holes.



Passing through the event horizon

Returning to the Schwarzschild metric, the Kretschmann scalar suggests that
the surface r = 2M might be a coordinate singularity. To show that this is in
fact the case, we need to transform to some different coordinates which ‘pass
through’ the surface r = 2M.

First, we examine the structure of the light cones near r = 2M. Since we’re in
spherical symmetry, we’ll look only at the (t, r) plane.
A null vector X in the (t, r) plane satisfies

−
(

1− 2M

r

)
(X t)2 +

(
1− 2M

r

)−1

(X r )2 = 0

⇒ X r = ±
(

1− 2M

r

)
X t ,

so a null curve passing through (t, r) = (t0, r0) is

dr

dt
= ±

(
1− 2M

r

)
⇒ t − t0 = ±

(
r − r0 + 2M log

(
r − 2M

r0 − 2M

))
.



Light cones and radial light rays in the Schwarzschild spacetime, drawn in
“Schwarzschild coordinates” (t, r , θ, φ). As r → 2M, the null cones are
“squeezed together”.



To find coordinates which might allow us to pass through r = 2M,
we can try to “straighten out” the null cones. This can be
achieved by changing from the coordinate t to a coordinate v
which is constant on the ingoing null curves. Define

r∗ := r + 2M log

(
r − 2M

2M

)
v := t + r∗.

v is constant along ingoing null geodesics (exercise). Then

dv = dt + dr∗ = dt +

(
1− 2M

r

)−1

dr .

Writing the metric in coordinates (v , r , θ, φ):

g = −
(

1− 2M

r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
.



The metric is no longer diagonal due to the term 2dvdr . The first
term still vanishes at r = 2M so we might think that the metric
degenerates here. However, the matrix gab is not degenerate: it is
still an invertible matrix, so it has maximal rank. We can check
that

g−1 = (g−1)ab∂a∂b

= 2∂v∂r +

(
1− 2M

r

)
(∂r )2 + r−2(∂θ)2 + r−2(sin θ)−2(∂φ)2.

The components of g and g−1 are both finite at r = 2M (except
for the usual degeneracy from polar coordinates)!



The coordinates (v , r , θ, φ) are called ingoing
Eddington-Finkelstein coordinates1. In these coordinates, ingoing
null curves are given by v = constant, while outgoing radial null
curves (in the region r > 2M) are given by

v − v0 = 2 (r∗ − r∗0 )

= 2

(
r − r0 + 2M log

(
r − 2M

r0 − 2M

))
Also, in these coordinates, there is nothing stopping us from
considering the ‘interior’ region 0 < r < 2M - the metric is
perfectly regular at r = 2M. You can also check that the curve
given by r = 2M is itself a null curve (exercise).

1There are also outgoing Eddington-Finkelstein coordinates. (u, r , θ, φ),
where u = t − r∗



Light cones and radial light rays in the Schwarzschild spacetime, drawn in
ingoing Eddington-Finkelstein coordinates (v , r , θ, φ). The surface r = 2M
is like a one-way membrane – you can enter, but you can never leave! This
surface is called the event horizon.


