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In ingoing Eddington-Finkelstein coordinates, the manifold is
completely smooth at r = 2M and we can pass right through the
surface r = 2M. We find that r = 2M is the event horizon of a
black hole: you can pass through it but you can’t escape!



Light cones and radial light rays in the Schwarzschild spacetime, drawn in
ingoing Eddington-Finkelstein coordinates (v , r , θ, φ).



We can also consider outgoing Eddington-Finkelstein coordinates
(u, r , θ, φ). In these coordinates, the surface r = 2M can be also
be seen to be a null surface, but this time causal curve cross it in
the opposite direction: you can pass from the interior r < 2M to
the exterior r > 2M, but you can’t enter the interior region! The
reason for this apparent discrepancy is that the ingoing and
outgoing Eddington-Finkelstein coordinates cover different parts of
the manifold (see figure 2). Outgoing Eddington-Finkelstein
coordinates cover a different ‘interior’ region 0 < r < 2M.



To clarify the situation, we can find some coordinates which cover
the original region (r > 2M) as well as the two extra regions
covered by ingoing and outgoing Eddington-Finkelstein
coordinates. These are called Kruskal coordinates (or
Kruskal-Szekeres coordinates), and are defined by

U = −e−
u
4M

V = e
v
4M ,

then in terms of the coordinates (U,V , θ, φ) the metric takes the
form
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where here r is defined implicitly in terms of U and V by the
relationship

log(−UV ) =
r∗

2M
.



Features of the metric in Kruskal coordinates

The metric is regular at r = 2M.

r = 2M is given by UV = 0.

The original region is U < 0, V > 0.

The region U > 0, V > 0 is the interior region covered by
ingoing Eddington-Finkelstein coordinates.

The region U < 0, V < 0 is the interior region covered by
outgoing Eddington-Finkelstein coordinates.

The region U > 0, V < 0 is a new region – it is actually
isomorphic to the starting region!

The full spacetime, including all four regions, is sometimes
called the maximally extended Schwarzschild spacetime.



The maximally extended Schwarzschild spacetime. The original
Schwarzschild coordinates only cover region (I). Ingoing Eddington-
Finkelstein coordinates cover the regions (I) and (II), while outgoing
Eddington-Finkelstein coordinates cover regions (I) and (III). Finally,
Kruskal-Szekeres coordinates cover regions (I), (II), (III) and (IV).



Sometimes, instead of U and V , Kruskal coordinates are defined to be
the coordinates (T ,X , θ, φ), where

T =
1

2
(U + V )

X =
1

2
(V − U).

r = 0 corresponds to the hyperboloid UV = 1, although this is technically
not part of the manifold.

The original (t, r , θ, φ) coordinates are called “Schwarzschild

coordinates”. In fact, in all four regions (corresponding to different sign

choices for U and V ) we can define Schwarzschild-type coordinates:

the metric takes the same form as the original metric (although in
the interior regions, r is a timelike coordinate and t is a spacelike
coordinates),
none of these coordinates extend up to the surface r = 2M, i.e.
points with U = 0 or V = 0 are not covered,
these are different coordinates from the original ones we started
with, covering different parts of spacetime!



Interpreting the maximally extended Schwarzschild
spacetime

Throughout the entire spacetime, the Einstein vacuum equations
Rµν = 0 hold. There is no matter present, especially not at r = 0,
which is not even a part of the manifold!

The picture of Schwarzschild in Kruskal coordinates is particularly
useful because radial light rays travel at 45 degrees on this diagram.
Every point on this figure represents a sphere.

Region (I) is the most familiar region: here r > 2M and, at large
distances, the metric approaches the flat Minkowski metric.
Worldlines of observers in this region, which always have tangent
vectors inside the light cones, can always escape to regions of
arbitrarily large r .



Region (II) is the black hole region. Once an observer has crossed
the surface r = 2M into region (II) they are stuck inside this region.
The surface r = 2M, called the event horizon, acts like a one-way
membrane: once you cross r = 2M there is no turning back! On the
other hand, there is no local quantity which distinguishes this
surface: the curvature is finite, and small observers can cross this
surface without noticing anything dramatic.

Once inside the black hole region r decreases along all worldlines,
and in fact all observers will reach r = 0 in a finite affine time (see
the example sheet).

Unlike the surface r = 2M, r = 0 is a genuine singularity: the
curvature is infinite here, and there is no way to extend the
manifold1 beyond r = 0.

Point particles moving on geodesics will not experience any forces,
but for a realistic observer of any finite size, tidal forces become
infinite as r → 0, ripping the observer apart.

1In fact, the manifold cannot be extended in a way such that the metric is
even continuous, let alone differentiable. This was only proved recently!



Because of the singularity at r = 0, the Schwarzschild spacetime is
geodesically incomplete. A geodesically complete manifold is one for
which all geodesics can be extended arbitrarily far, so that their
associated affine parameters can take values in (−∞,∞).
Minkowski space is geodesically complete, while Schwarzschild is
not.



Regions (III) and (IV)

Regions (III) and (IV) are unphysical: in a realistic black hole
formed by the collapse of a star they are ‘covered up’ by the
matter. However, for the purposes of calculations it is often helpful
to work with the full extended Schwarzschild geometry. Since this
geometry is invariant under time reversal, these two regions must
be present.

Region (III) is called the white hole region: it is the time-reversal
of the black hole region, and has the time-reversed properties.
Observers can leave this region, but they can never enter it!

Region (IV) is a ‘copy’ of the original region (I): it is also
asymptotically flat, and looks like Minkowski space far away from
the event horizon. It is sometimes said to be ‘another universe’,
and inspired ideas about wormholes. However, there is no way for
observers to get from region (I) into region (IV), even if it were
there!



The spacetime of a “realistic” spherically symmetric collapsing star. By
Birkhoff’s theorem, the geometry is exactly described by the Schwarzschild
metric outside of the star, but inside the star the geometry will be modified,
covering up regions (III) and (IV).


