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A homogeneous and isotropic spacetime. There are isometries mapping
any point on a surface Στ to any other point on that surface, and also
isometries mapping any tangent vector to the surface Στ to any other
tangent vector (these isometries are shown in red). Comoving observers
move along worldlines which are orthogonal to ths surfaces Στ .



Tensors and other objects can be decomposed into parts which are
tangent to the surfaces Στ , and parts which are orthogonal to
these surfaces: for example, for a vector X we can write

X = X (τ)(−dτ)] + X

where X is a vector tangent to the surface Στ .



This symmetry class makes it easy to calculate the Christoffel symbols
and components of the Riemann curvature tensor, for the following
reasons:

Scalar fields on each surface Στ must be constant for consistency
with homogeneity. So scalar quantities can only depend on time τ .

All (co)vector fields tangent to Στ must vanish for consistency with
isotropy.

The only (1, 1) tensor fields on the surface Στ consistent with
homogeneity and isotropy are those proportional to the Kronecker
delta δij , and the constant of proportionality can only depend on
time τ .

The only (0, 2) tensor fields on the surface Στ consistent with
homogeneity and isotropy are those proportional to the metric g

ij
,

and the constant of proportionality can only depend on time τ .

The only (2, 0) tensor fields on the surface Στ consistent with
homogeneity and isotropy are those proportional to the inverse
metric (g−1)ij , and the constant of proportionality can only depend
on time τ .



Recall that we use i , j , k etc. to refer to spatial indices. Using
these facts together with the form of the metric, some fairly
tedious calculations lead to the following expressions for the Ricci
tensor components:

R00 = −3
ä

a
R0i = 0

Rij =
(
aä + 2ȧ2 + 2k

)
g
ij
,

where ‘dots’ represent derivatives with respect to τ . From these we
can calculate

G00 + Λg00 = 3
ȧ2 + k

a2
− Λ

Gij + Λgij =
(
−2aä− ȧ2 − k + a2Λ

)
g
ij
.



The energy momentum tensor must also respect the symmetries
imposed by homogeneity and isotropy. This means that we can
write

T00 := ρ

Tij := pa2g
ij

where these equations define the ‘density’ and ‘pressure’ – we are
not necessarily assuming that the matter is a fluid.



The Friedmann equations

The Einstein equations in a homogeneous and isotropic spacetime
are called the Friedmann equations. They are the following system
of ODEs, which are derived by equating the components of the
Einstein tensor and the energy momentum tensor in a
homogeneous, isotropic spacetime:

3
ȧ2 + k

a2
− Λ = 8πρ

2aä + ȧ2 + k − a2Λ = −8πpa2

Sometimes the following equation, following from the two above, is
useful:

ä

a
= −4

3
π(ρ+ 3p) +

1

3
Λ



To obtain a closed system, we can supplement the Friedmann
equations with an equation of state, which expresses the pressure p
as a function of the density ρ.

By differentiating the first Friedmann equation with respect to τ ,
we obtain a useful equation for the evolution of the density ρ:

8πρ̇ =
3ȧ

a3

(
2aä− 2ȧ2 − 2k

)
=

3ȧ

a3

(
3ȧ2 − 3k + a2Λ− 8πa2p

)
= −24π

ȧ

a
(p + ρ)

and so we obtain the equation for the derivative of the density

ρ̇ = −3
ȧ

a
(p + ρ)



Equations of state

Often equations of state of the following form are considered:

p = wρ,

where w is a constant. In this case the density evolves as

ρ̇

ρ
= −3(1 + w)

ȧ

a

⇒ ρ ∝ a−3(1+w).



Particular values of the constant w have physical meanings:

1 Dust: w = 0, ρ ∝ a−3. The pressure vanishes for any value of the
density. This is often used to model “ordinary” matter – stars, galaxies,
dark matter etc. – since on very large scales there is negligible pressure
between these objects. In this case the energy is proportional to the
volume element: as the universe expands (and a increases), matter
dilutes.

2 Radiation: w = 1
3
, ρ ∝ a−4. From statistical physics, radiation can be

treated as a perfect fluid with p = 1
3
ρ. The energy density ρ decreases

both due to the increase in the volume element and due to redshift of the
photons.

3 Dark energy: w = −1, ρ = const. In this case both the pressure and
density are constant, independent a. In fact, the energy-momentum
tensor is proportional to g (exercise). This allows us to reinterpret the
cosmological constant Λ as a component of “matter”, but there is no
clear microscopic understanding this. It is usually thought of as the
energy of the vacuum, i.e. the ground state energy of the quantum fields
describing matter. Cosmological observations give Λ ∼ 0, whereas QFT
predicts a value around 10120 times larger!



Cosmological redshift and Hubble’s law

Alice and Bob are both comoving observers. Alice follows the
worldline (τ, 0, 0, 0) and Bob the worldline (τ, rB , θB , φB), where
rB , θB and φB are constants. Bob sends light signals at regular
intervals ∆τB to Alice, who receives them at time intervals ∆τA.

Radial null lines in a cosmological spacetime are null geodesics
(this follows from isotropy, but exercise: check this explicitly).
Hence the tangent to an (ingoing) radial null geodesic is

X = ∂τ −
√

1− kr2

a
∂r

and the path of a null geodesic is (τ, r(τ), θ0, φ0) where

dr

dτ
= −
√

1− kr2

a
.



So, if a light ray leaves Bob at time τ = τB and arrives at Alice at
τ = τA, then ∫ 0

rB

− dr√
1− kr2

=

∫ τA

τB

dτ

a(τ)
.

Performing the same calculation for the subsequent signal, and
noting that the left hand side is independent of τ , we have∫ τA+∆τA

τB+∆τB

dτ

a(τ)
=

∫ τA

τB

dτ

a(τ)
.

If ∆τA and ∆τB are very small compared to τB − τA, then to
leading order,

∆τA
a(τA)

=
∆τB
a(τB)

,

so the ratio of the received frequency to the emitted frequency is

∆τA
∆τB

=
a(τA)

a(τB)
.



∆τA
∆τB

=
a(τA)

a(τB)
.

In an expanding universe, the scale factor a grows over time. Since
τA > τB , a(τA) > a(τB) and so ∆τA > ∆τB . So Alice sees the signals at
a lower frequency than they are emitted by Bob: this is cosmological
redshift.

Next, suppose that Alice and Bob are close together (relative to the time
scale on which a varies). Expanding our expression:

∆τA
∆τB

= a(τA)
(
a(τA)− (τA − τB)ȧ(τA)

)−1

+O
(
(τA − τB)2

)
= 1 + (τA − τB)

ȧ(τA)

a(τA)
+O

(
(τA − τB)2

)
= 1 + (τA − τB)H(τA) +O

(
(τA − τB)2

)
,

where H(τ) := ȧ(τ)
a(τ) is the “Hubble constant”. Note that the Hubble

constant is not actually constant, but depends on time!



Hubble’s law

∆τA
∆τB

≈ 1 + (τA − τB)H

is known as Hubble’s law. The quantity (τA − τB) is a natural
measure of the distance from Bob to Alice: it is the time taken for
light to travel from Bob to Alice (remember that we set c = 1).

Hubble’s law says that light from nearby galaxies (assumed to
move, roughly, along the worldlines of comoving observers) is
redshifted in a way which scales linearly with the distance to that
galaxy, and the constant of proportionality is Hubble’s constant.
Hubble’s discovery of this law, with H > 0, provided the first clear
evidence in favour of an expanding universe.


