Office hours 1

Joe Keir
Joseph.Keir@maths.ox.ac.uk

The relationship between component notation and vectors/matrices

What is the relationship between notation like $m_{a b}$, and the matrix $\operatorname{diag}(-1,1,1,1)$? I haven't been very explicit with this - it's up to you the conventions you use - but let's say that the first index corresponds to the row and the second to the column.
Then for a matrix M times a vector X (on the right), we could write something like

$$
M_{a b} X^{b}
$$

If we wanted to multiply by another vector Y on the left, then we would write

$$
\boldsymbol{Y}^{T} M \boldsymbol{X}=Y^{a} M_{a b} X^{b}=M_{a b} Y^{a} X^{b}
$$

What are these objects X^{a} ? Choose a point $p \in \mathbb{M}^{4}$, then the tangent space at p is the set of vectors "starting at" p, i.e. objects like $(q-p)$ with $q \in \mathbb{M}^{4}$. This is a 4-dimensional vector space.

Choosing "inertial coordinates centred at p " means choosing a special kind of basis for this vector space, $e_{0}, e_{1}, e_{2}, e_{3}$. Then the components of the vector $(q-p)$ are given by

$$
q-p=(q-p)^{a} e_{a}
$$

The "coordinates of the point q " in these inertial coordinates are just $(q-p)^{a}$ (so that the coordinates of p are $(0,0,0,0)$).

What makes the choice of basis "special"?

The basis is "special" if the components of the Minkowski metric in this basis are $\operatorname{diag}(-1,1,1,1)$. What do we mean by the components of the metric?

The metric is a bilinear form, i.e. something which takes in two vectors (say at the point p) X and Y, and spits out a real number, $m(X, Y)$. It is linear in both arguments, so

$$
\begin{aligned}
m\left(a_{1} X_{1}+a_{2} X_{2}, b_{1} Y_{1}+b_{2} Y_{2}\right)= & a_{1} b_{1} m\left(X_{1}, Y_{1}\right)+a_{1} b_{2} m\left(X_{1}, Y_{2}\right) \\
& +a_{2} b_{1} m\left(X_{2}, Y_{1}\right)+a_{2} b_{2} m\left(X_{2}, Y_{2}\right)
\end{aligned}
$$

The components of the bilinear form, $m_{a b}$, are just the numbers we get by acting on the basis vectors:

$$
m_{a b}:=m\left(e_{a}, e_{b}\right)
$$

So inertial coordinates \leftrightarrow choosing a (pseudo-)orthonormal basis with respect to the inner product $\langle X, Y\rangle=m(X, Y)$.

Now it's easy to see that

$$
\begin{array}{rlr}
m(X, Y) & =m\left(X^{a} e_{a}, Y^{b} e_{b}\right) & \text { (expanding the vectors in a basis) } \\
& =X^{a} Y^{b} m\left(e_{a}, e_{b}\right) & \text { (by linearity) } \\
& \left.=X^{a} Y^{b} m_{a b} \quad \text { (definition of } m_{a b}\right) .
\end{array}
$$

A Lorentz transformation (centred at p) is a change of basis vectors, from e_{a} to $e_{a^{\prime}}^{\prime}$, "preserving the form of the metric". Since the basis vectors $e_{a^{\prime}}^{\prime}$ form a basis, we can write

$$
e_{a}=\Lambda_{a}^{a^{\prime}} e_{a^{\prime}}^{\prime}
$$

and then the vector X can be expanded in terms of this new basis:

$$
X=X^{a} e_{a}=X^{a} \Lambda_{a}^{a^{\prime}} e_{a^{\prime}}^{\prime}=\left(X^{a} \Lambda_{a}^{a^{\prime}}\right) e_{a^{\prime}}^{\prime}=\left(X^{\prime a^{\prime}}\right) e_{a^{\prime}}^{\prime}
$$

so the new components of X are

$$
X^{\prime a^{\prime}}=\Lambda_{a}^{a^{\prime}} X^{a}
$$

What about the new components of the metric, $m_{a^{\prime} b^{\prime}}^{\prime}$? These are

$$
\begin{aligned}
m_{a^{\prime} b^{\prime}}^{\prime} & =m\left(e_{a^{\prime}}^{\prime}, e_{b^{\prime}}^{\prime}\right) \\
& =m\left(\left(\Lambda^{-1}\right)_{a^{\prime}}^{a} e_{a},\left(\Lambda^{-1}\right)_{b^{\prime}}{ }^{b} e_{b}\right) \\
& =\left(\Lambda^{-1}\right)_{a^{\prime}}\left(\Lambda^{-1}\right)_{b^{\prime}}{ }^{b} m\left(e_{a}, e_{b}\right) \\
& =\left(\Lambda^{-1}\right)_{a^{\prime}}\left(\Lambda^{-1}\right)_{b^{\prime}}{ }^{b} m_{a b} .
\end{aligned}
$$

This means multiplying on both the left and the right by Λ^{-1} : in matrix notation,

$$
m^{\prime}=\left(\Lambda^{-1}\right)^{T} m \Lambda^{-1}
$$

An alternative way to derive this formula: the quantity $m(X, Y)$ doesn't "know" anything about which basis we are working in. Hence we must have

$$
\begin{aligned}
m(X, Y) & =m_{a b} X^{a} Y^{b} \\
& =m_{a^{\prime} b^{\prime}}^{\prime}\left(X^{\prime}\right)^{a^{\prime}}\left(Y^{\prime}\right)^{b^{\prime}} \\
& =\left(m_{a^{\prime} b^{\prime}}^{\prime} \Lambda_{a}^{a^{\prime}} \Lambda_{b}^{b^{\prime}}\right) X^{a} Y^{b}
\end{aligned}
$$

and so

$$
\begin{aligned}
m_{a b} & =\left(m_{a^{\prime} b^{\prime}}^{\prime} \Lambda_{a}^{a^{\prime}} \Lambda_{b}^{b^{\prime}}\right) \\
\Rightarrow m_{a^{\prime} b^{\prime}}^{\prime} & =m_{a b}\left(\Lambda^{-1}\right)_{a^{\prime}}{ }^{a}\left(\Lambda^{-1}\right)_{b^{\prime}}^{b} .
\end{aligned}
$$

What is ∂^{a} ?

Remember, the covector $\mathrm{d} \phi$ has components (in an inertial coordinate system) $\partial_{a} \phi$, which are just the partial derivatives of ϕ with respect to the inertial coordinates. We showed that this definition doesn't depend on the choice of inertial coordinate system.
The same thing works for higher rank tensors - e.g. given a $(0,2)$ tensor T, the tensor ∂T is the tensor with components $\partial_{a} T_{b c}$, which are the partial derivatives of the components of T with respect to some inertial coordinate system. This also doesn't depend on which inertial coordinates we choose.

What about the notation $\partial^{a} \phi$? Remember, we lower and raise indices using the metric and its inverse. So $\partial^{a} \phi$ are the components of the vector $(\mathrm{d} \phi)^{\sharp}$: in index notation

$$
\partial^{a} \phi=\left(m^{-1}\right)^{a b} \partial_{b} \phi
$$

In fact, the components of $\partial^{a} \phi$ are the same as the components of $\partial_{a} \phi$, except that the zero-th components has an extra minus sign if, in some chosen inertial coordinates, $\partial_{a} \phi=(A, B, C, D)$, then $\partial^{a} \phi=(-A, B, C, D)$.

Vectors vs components

Many textbooks don't distinguish between a vector V and its components V^{a}. People will often think of a vector as a list of components V^{a}, which transforms in a certain way under Lorentz transformations.

For us, a vector ("at p ") is an ordered pair of points in \mathbb{M}^{4}, which we write as $V=q-p$. The components of the vector V^{a} are the numbers V^{1}, \ldots, V^{3} such that

$$
V=V^{a} e_{a}
$$

where e_{a} are a set of (pseudo)-orthonormal basis vectors, $m\left(e_{a}, e_{b}\right)=m_{a b}$. The inertial coordinates x^{a} associated with the basis vectors e_{a} are coordinates on \mathbb{M}^{4}, chosen such that

$$
q-p=x^{a}(q) e_{a} .
$$

In other words, the coordinates of the point q are the same as the components of the vector $q-p$.

Using this, we can derive the transformation law for the components of a vector - we don't just define a vector as a list of numbers that transforms as $X^{\prime}\left(a^{\prime}\right)=\Lambda_{a}{ }^{a^{\prime}} X^{a}$.

We will follow the same pattern in GR - rather than defining vectors, tensors etc. as lists or arrays which transform in certain ways under coordinate transformations, we will define certain vector spaces and then derive the transformation laws.

Advantages of this approach:

- It is clear that at least some examples of these objects (vectors, tensors etc.) exist as mathematical objects.
- It helps to avoid confusion: e.g. when we change coordinates, the components of a vector change, but the vector itself is invariant.
- The relationship between vectors, tangents to curves, partial derivatives etc. is made clear.
- It leads to an easy way to compute the transformation laws for various objects, including non-tensorial objects like the Christoffel symbols. In the alternative approach, we often demand that a certain object transforms "in the way it should", and then use this to derive the appropriate transformation laws for various objects.

