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The relationship between component notation and
vectors/matrices

What is the relationship between notation like mab, and the matrix
diag(−1, 1, 1, 1)? I haven’t been very explicit with this – it’s up to
you the conventions you use – but let’s say that the first index
corresponds to the row and the second to the column.

Then for a matrix M times a vector X (on the right), we could
write something like

MabX
b.

If we wanted to multiply by another vector Y on the left, then we
would write

Y TMX = Y aMabX
b = MabY

aX b.



What are these objects X a? Choose a point p ∈M4, then the
tangent space at p is the set of vectors ”starting at” p, i.e. objects
like (q − p) with q ∈M4. This is a 4-dimensional vector space.

Choosing “inertial coordinates centred at p” means choosing a
special kind of basis for this vector space, e0, e1, e2, e3. Then the
components of the vector (q − p) are given by

q − p = (q − p)aea.

The “coordinates of the point q” in these inertial coordinates are
just (q − p)a (so that the coordinates of p are (0, 0, 0, 0)).

What makes the choice of basis “special”?



The basis is “special” if the components of the Minkowski metric in this
basis are diag(−1, 1, 1, 1). What do we mean by the components of the
metric?

The metric is a bilinear form, i.e. something which takes in two vectors
(say at the point p) X and Y , and spits out a real number, m(X ,Y ). It
is linear in both arguments, so

m(a1X1 + a2X2, b1Y1 + b2Y2) = a1b1m(X1,Y1) + a1b2m(X1,Y2)

+ a2b1m(X2,Y1) + a2b2m(X2,Y2).

The components of the bilinear form, mab, are just the numbers we get
by acting on the basis vectors:

mab := m(ea, eb).

So inertial coordinates ↔ choosing a (pseudo-)orthonormal basis with
respect to the inner product 〈X ,Y 〉 = m(X ,Y ).



Now it’s easy to see that

m(X ,Y ) = m(X aea,Y
beb) (expanding the vectors in a basis)

= X aY bm(ea, eb) (by linearity)

= X aY bmab (definition of mab).



A Lorentz transformation (centred at p) is a change of basis
vectors, from ea to e ′a′ , “preserving the form of the metric”. Since
the basis vectors e ′a′ form a basis, we can write

ea = Λ a′
a e ′a′ ,

and then the vector X can be expanded in terms of this new basis:

X = X aea = X aΛ a′
a e ′a′ = (X aΛ a′

a )e ′a′ = (X ′a
′
)e ′a′ ,

so the new components of X are

X ′a
′

= Λ a′
a X a.



What about the new components of the metric, m′a′b′? These are

m′a′b′ = m(e ′a′ , e
′
b′)

= m
(

(Λ−1) a
a′ ea, (Λ−1) b

b′ eb

)

= (Λ−1) a
a′ (Λ−1) b

b′ m(ea, eb)

= (Λ−1) a
a′ (Λ−1) b

b′ mab.

This means multiplying on both the left and the right by Λ−1: in
matrix notation,

m′ = (Λ−1)TmΛ−1.



An alternative way to derive this formula: the quantity m(X ,Y )
doesn’t “know” anything about which basis we are working in.
Hence we must have

m(X ,Y ) = mabX
aY b

= m′a′b′(X
′)a

′
(Y ′)b

′

= (m′a′b′Λ
a′

a Λ b′
b )X aY b,

and so

mab = (m′a′b′Λ
a′

a Λ b′
b )

⇒ m′a′b′ = mab(Λ−1) a
a′ (Λ−1) b

b′ .



What is ∂a?

Remember, the covector dφ has components (in an inertial
coordinate system) ∂aφ, which are just the partial derivatives of φ
with respect to the inertial coordinates. We showed that this
definition doesn’t depend on the choice of inertial coordinate
system.

The same thing works for higher rank tensors – e.g. given a (0, 2)
tensor T , the tensor ∂T is the tensor with components ∂aTbc ,
which are the partial derivatives of the components of T with
respect to some inertial coordinate system. This also doesn’t
depend on which inertial coordinates we choose.



What about the notation ∂aφ? Remember, we lower and raise
indices using the metric and its inverse. So ∂aφ are the
components of the vector (dφ)]: in index notation

∂aφ = (m−1)ab∂bφ.

In fact, the components of ∂aφ are the same as the components of
∂aφ, except that the zero-th components has an extra minus sign –
if, in some chosen inertial coordinates, ∂aφ = (A,B,C ,D), then
∂aφ = (−A,B,C ,D).



Vectors vs components

Many textbooks don’t distinguish between a vector V and its components
V a. People will often think of a vector as a list of components V a, which
transforms in a certain way under Lorentz transformations.

For us, a vector (“at p”) is an ordered pair of points in M4, which we
write as V = q − p. The components of the vector V a are the numbers
V 1, . . . ,V 3 such that

V = V aea,

where ea are a set of (pseudo)-orthonormal basis vectors,
m(ea, eb) = mab. The inertial coordinates xa associated with the basis
vectors ea are coordinates on M4, chosen such that

q − p = xa(q)ea.

In other words, the coordinates of the point q are the same as the
components of the vector q − p.



Using this, we can derive the transformation law for the
components of a vector – we don’t just define a vector as a list of
numbers that transforms as X ′(a′) = Λ a′

a X a.

We will follow the same pattern in GR – rather than defining
vectors, tensors etc. as lists or arrays which transform in certain
ways under coordinate transformations, we will define certain
vector spaces and then derive the transformation laws.



Advantages of this approach:

It is clear that at least some examples of these objects
(vectors, tensors etc.) exist as mathematical objects.

It helps to avoid confusion: e.g. when we change coordinates,
the components of a vector change, but the vector itself is
invariant.

The relationship between vectors, tangents to curves, partial
derivatives etc. is made clear.

It leads to an easy way to compute the transformation laws
for various objects, including non-tensorial objects like the
Christoffel symbols. In the alternative approach, we often
demand that a certain object transforms “in the way it
should”, and then use this to derive the appropriate
transformation laws for various objects.


