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Typos in lecture 4.5

In lecture 4.5 (examples), there were a couple of typos in the
question about ladders:

1 The parameter λ, used to parametrise the spacelike curve
which we think of as “the ladder in its rest frame”, was
missing a minus sign – I should have defined it so that it
increases when we go from the front of the ladder to the back.

2 There was another typo: the formula λ = s
√

1− v2, which
should have been s = λ

√
1− v2.



Lecture numbering and when to watch them

To give you an idea of the pace of the course, last year:

Lectures 1-4 covered background material, spacetime,
Newtonian gravity, special relativity and the equivalence
principle.

Lectures 5-8 covered most of differential geometry, up to (but
not including) curvature.

Lectures 9-12 covered curvature, the Einstein equations and
the exterior Schwarzschild solution, including solar system GR
effects.

Lectures 13-16 covered the Schwarzschild black hole and
cosmology .

These line up with the questions on problem sheets 1-4.



Tangent vectors to curves

Given a curve γ : [0, 1]→M, we defined the tangent vector to the
curve V , at the point p = γ(λ0), to be the operator which acts on
smooth functions f via

V
∣∣
p
(f ) =

d

dλ
(f ◦ γ)

∣∣
λ0
.

V
∣∣
p
(f ) is not independent of f ; it is an operator acting on the

function f . What we actually want to show is that equivalence
classes of tangent vectors (under the equivalence relation V1

∼= V2

if V1(f ) = V2(f ) for all smooth f ) forms an N-dimensional vector
space.



To show this, let V ∈ [V ] be a tangent vector at the point p ∈M,
tangent to a curve γ. Then

V (f ) =
d

dλ

(
f ◦ φ−1U ◦ φU ◦ γ

) ∣∣
λ0
,

now,

f ◦ φ−1U = f̃ : Rn → R, and

φU ◦ γ = (xa(λ)) : [0, 1]→ Rn,

so

V (f ) =
d

dλ

(
f̃ (xa(λ))

) ∣∣
λ0

=
dxa(λ)

dλ

∣∣∣∣
λ0

∂ f̃

∂xa

∣∣∣∣
xa(λ0)

= V a ∂ f̃

∂xa

∣∣∣∣
xa(λ0)

.



We have seen that, if we choose some chart φU covering the point
p (i.e. some local coordinates), then for any tangent vector V we
can write

V (f ) = V a ∂ f̃

∂xa

∣∣∣∣
xa(λ0)

.

We can use this to give a map Φ : Tp(M)→ RN , via

V ∈ [V ] ∈ Tp(M)

Φ([V ]) = V a.

This map is well-defined: let W ∈ [V ] be some tangent vector to
another curve γ′, in the same equivalence class. Then, since
V (f ) = W (f ), we easily see that V a = W a.



We want to show that this map is a bijection, i.e. that Φ−1 exists.
Let V a ∈ RN ; then consider the set of curves in φU(U) ⊂ RN ,

[γ] :=

{
γa : [0, 1]→ RN , γa(λ0) = φU(p) ,

d

dλ
γa
∣∣∣∣
λ0

= V a

}
.

We can “lift” this to a set of curves on the manifold:

[γ̂] =
{
φ−1U ◦ γ , γ ∈ [γ]

}
.

Then we can easily check that Φ−1 : V a → [γ̂] is the inverse of Φ.

Note that this map depends on the choice of local coordinates.



The “transformation law” for scalars

In the notes it’s stated that scalar fields don’t transform when we
change coordinates, and also that we can form a scalar field by
contracting a vector and a covector. How can we see this?



A scalar field is a map f :M→ R. Local coordinates are maps
φU :M→ RN . Since f is not a function of φU , if we change from
φU to φV , the function f doesn’t change!

However, the function f̃U = f ◦ φ−1U does change. This is a
function from RN → R; it is “f as a function of the local
coordinates”. Then we can see that

f̃V = f̃U ◦ φU ◦ φ−1V = f̃U ◦ φV ,U ,

where φV ,U is a transition function. This just means that

f̃V (y) = f̃U(x(y)).



A covector η : Tp(M)→ R, so if X ∈ Tp(M), then η(X ) : p → R
is just a scalar function at p. Hence it is independent of a change
of local coordinates.

We can also see this directly using the fact that η(X ) = ηaX
a,

together with the definition of the components:

ηa = η(∂a)

X a = X (xa).

From these we can deduce the transformation laws for the
components, and then we find that

(η′)a′(X
′)a

′
= ηa

(
∂xa

∂ya′

)(
∂ya

′

∂xb

)
X b = ηaδ

a
bX

b = ηaX
a,

using the inverse function theorem.



Tensors

Two (equivalent) definitions:

1 A tensor at a point p is an element of the (vector
space/tensor) product of the tangent space at p, to some
power n, times the cotangent space at p, to some power m.

2 A tensor at a point p is a multilinear map from the (vector
space/tensor) product of the tangent space at p, to some
power m, times the cotangent space at p, to some power n, to
the reals.

The second is easier to work with in practice.



E.g. to check that some map T from Tp(M)2 → R defines a
tensor, we need to check that

T (aX + X ′, bY + Y ′)

= abT (X ,Y ) + aT (X ,Y ′) + bT (X ′,Y ) + T (X ′,Y ′)

for all constants a and b, and for all vectors X and Y .

If we’re talking about tensor fields instead of tensors, then you just
need to check the same thing, except that now you need to check
C-infinity linearity, i.e. you need to check that the same equation
holds, but now a and b are allowed to be scalar fields (not just
constants) and X and Y are allowed to be vector fields (not just
vectors at p).



There is a difference between a tensor (which is a multilinear map)
and the components of a tensor (which is an array of numbers) –
just like the difference between a vector and the components of a
vector.

We derived expressions for how the components of a tensor
transform when we change coordinates. Hence one way to show
that an object is not a tensor is to show that its components don’t
transform in the required way.

On the other hand, given an array of numbers Tab, we can form a
tensor

T = Tabdx
adxb,

then the components of T , with respect to the coordinates xa, are
Tab.



One unfortunate piece of notation when writing tensors: suppose
we have a (1, 1) tensor Q. Then we can write this as

Q = Q b
a dxa∂b,

but here you might think that the covector dxa is acting on the
vector ∂b. If you prefer, you can write this as

Q = Q b
a dxa ⊗ ∂b.

In the notes I don’t use the symbol ⊗, but I do try to use brackets
to indicate “acting on”, e.g. ηX is just the tensor product of η and
X , while η(X ) is η acting on X .


