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Symmetric products and notation for the metric

The metric g can be expanded in terms of coordinate differentials
as

g = gabdx
adxb = gabdx

a ⊗ dxb.

We can check that gab are the components of g :

g(∂a, ∂b) = gcd [dxc(∂a)][dxd(∂b)]

= gcdδ
c
aδ

d
b = gab.

Because the components of the metric are symmetric gab = gba,
we don’t need to worry about symmetrising over the differentials.



On the other hand, in an expression like

g = dx1dx2 = dx1 ⊗S dx2,

we must assume that we are using the “symmetric tensor product”:

dx1 ⊗S dx2 =
1

2
dx1 ⊗ dx2 +

1

2
dx2 ⊗ dx1,

and so the components of g are g12 = g21 = 1
2 .

Often we use letters rather than numbers to label coordinates, e.g.

g = dxdy = dx ⊗S dy ,

and then we might write gxy = gyx = 1
2 .



“Sliding” vectors around

Why do we say that there is no natural way to “slide vectors around” in a
manifold? Mathematically, given a vector V1 ∈ Tp1M, why is there not a
“corresponding” vector V2 ∈ Tp2M?

Consider a curved surface S ⊂ E3. “Vectors” tangent to this surface are
just vectors in E3, tangent to the surface in the ordinary sense.

If we try to slide this vector around, staying parallel to itself using the
ambient E3 structure, then in general a vector at p1 will not be tangent
to S at p2, and so cannot be interpreted as a “vector” at p2.

If, as we slide the vector around, we alternate between ‘sliding’ a distance
ε, and projecting onto the surface, then this is the same as parallel
transport1. But in this case, the resulting vector at p2 turns out to
depend on the path taken from p1 to p2 (unless S is flat).

1Using the Levi-Civita connection associated with the metric that S inherits
from the ambient space.



Spherical polar coordinates

Why don’t the ordinary polar coordinates (θ, φ) cover the entire
sphere S2?

[0, π]× [0, 2π) is not open in R2!

This map is not a bijection: all points (0, φ) for φ ∈ [0, 2π)
are mapped to the same point (the north pole) on the sphere,
and similarly for all points (π, φ).



Composing a curve and a chart

We often write a curve “in local coordinates”, or we write it as
γa(λ) or xa(λ). What exactly does this mean?

Consider γ̃ = φU ◦ γ : [0, 1]→ Rn. A point in Rn is of the form
(x0, x1, . . . , xn−1). Hence

γ̃(λ) = (x0(λ), x1(λ), . . . , xn−1(λ)) = (γ0(λ), γ1(λ), . . . , γn−1(λ)).

These are the xa(λ) or the γa(λ).



Abstract vs. concrete indices

What exactly is “wrong” with an expression like Tµµ or T aa? The
answer depends on whether we are working with abstract indices or
concrete ones.



Working in abstract indices, the indices only tell us what kind of
object we’re dealing with. Repeated indices indicate a “trace”,
which we know is well defined independent of the coordinate
system. E.g.

Tµ
µ =

∑
T (f a, ea),

where ea are a basis for the tangent space, and f a are the dual
basis for the cotangent space, so f a(eb) = δab. This is independent
of the choice of basis ea.

We might think that Tµµ indicates the object whose value, in any
coordinate system, is

∑
a T

aa. But the problem is that this object
is not a scalar field – its value depends on the coordinate system
chosen. So it doesn’t make sense to talk about Tµµ without
specifying a coordinate system.



Working in concrete indices, there is nothing especially wrong with
considering the quantity

T aa =
∑
a

T aa.

However, for the same reasons as before, we cannot regard this
object as defining a scalar field.

In other words, this equation does define a scalar f , but that scalar
will depend on which coordinate system we are working in. So if
we change coordinates, then in general we will find that

f 6= (T ′)a
′a′ .



Vectors vs. covectors and their actions

A vector V can act on scalars f to give V (f ), while a covector df
can act on vectors V to give the same quantity, V (f ). So what’s
going on?

First, let’s clarify how a vector V ∈ Tp(M) acts on scalar fields f .
Recall that a vector V is an equivalence class of tangent vectors
[V ] to curves [γ]. We first choose any one of these curves γ ∈ [γ]
through the point p. Then

V (f ) =
d

dλ
(f ◦ γ) (λ)

∣∣
λ=γ−1(p)

.



Now, when a vector acts on a scalar field, it does not act in a C∞

linear manner. Instead, it obeys the Leibniz rule. So, if we
compute V (ab) for two scalar fields a and b, we find that

V (ab) = aV (b) + bV (a).

On the other hand, the covector field df acts on vector fields V via

df (V ) = V (f ).

This does act in a C∞ linear manner:

df (aV + V ′) = (aV + V ′)(f ) = aV (f ) + V ′(f ).


