Office hours 4

Joe Keir
Joseph.Keir@maths.ox.ac.uk

Acceleration of Jacobi fields

In the lecture notes I wrote an equation of the form

$$
\frac{\partial^{2}}{\partial^{2} \tau} J=\nabla_{X} \nabla_{X} J
$$

and we later went on to show that this is equal to $R(X, J) X$. But it's not at all clear what I mean by the partial derivatives of the vector field J - in fact, I only really wrote this expression to suggest that we should think of $\nabla_{X} \nabla_{X} J$ as being like the acceleration of J along the geodesic with tangent vector X.

This can be contrasted with the case of a scalar field: for any scalar field f, we have

$$
\frac{\partial f}{\partial \tau}=X(f)=\nabla_{X} f
$$

and similarly for higher derivatives.

An obvious way to interpret the expression $\frac{\partial^{2}}{\partial \tau^{2}} J$ is as the vector field whose components are $\frac{\partial^{2}}{\partial \tau^{2}} J^{a}$. But this depends on which coordinates we choose - it's not a coordinate-independent expression.

In fact, if we use coordinates $\left(\tau, s, x^{2}, x^{3}\right)$, where x^{2} and x^{3} are chosen so that the surface generated by the timelike geodesics is given by $x^{2}=x^{3}=0$ (so these coordinates are "transverse" to this surface), then we find that

$$
J=\frac{\partial}{\partial s}
$$

so the components of J are $(0,1,0,0)$. Hence the derivatives of the components of J just vanish, if we use these coordinates!

There are some "coordinates" in which the derivatives of the components of J are the same things as the components of the vector $\nabla_{X} \nabla_{X}$ J. In fact, what we need are not coordinates but a "frame".

A frame is a set of vector fields e_{a}, such that, at every point where the frame is defined, these vectors span the tangent space. An example of a frame is the set of coordinate induced vector fields ∂_{a} - but not all frames have to be of this form.

We set up our frame as follows: at the point $\tau=0$, along each geodesic, we choose some frame. We then transport this frame along the integral curves of X by parallel transport: that is, our frame vector field satisfy

$$
\nabla_{x} e_{a}=0
$$

for all a. If we want, we can choose $e_{0}=X$, since that $\nabla_{X} X=0$.
These e_{a} span the tangent space initially (i.e. at $\tau=0$). In fact, they always span the tangent space, since their inner products with one another don't change as we move along the geodesics:

$$
\frac{\partial}{\partial \tau} g\left(e_{a}, e_{b}\right)=X\left(g\left(e_{a}, e_{b}\right)\right)=g\left(\nabla_{X} e_{a}, e_{b}\right)+g\left(e_{a}, \nabla_{X} e_{b}\right)=0
$$

and, if the matrix $g_{a b}=g\left(e_{a}, e_{b}\right)$ is non-degenerate, then the vectors $\left\{e_{a}\right\}$ span the tangent space.

Since the e_{a} span the tangent space at each point along the integral curves of X, we can expand the vector J in terms of this basis:

$$
J=J^{a} e_{a} .
$$

The scalars J^{a} are the components of J relative to the frame e_{a}.
Now let's calculate the components of the vector $\nabla_{X} \nabla_{X} J$:
$\left(\nabla_{X} \nabla_{X} J\right)^{a} e_{a}=\nabla_{X} \nabla_{X} J=\nabla_{X} \nabla_{X}\left(J^{a} e_{a}\right)=\left(\nabla_{X} \nabla_{X} J^{a}\right) e_{a}=\frac{\partial^{2} J^{a}}{\partial \tau^{2}} e_{a}$.
Hence, relative to this frame, the components of the vector $\nabla_{X} \nabla_{X} J$ are the same as the second derivatives of the components of J.

Frames vs coordinates

Given some coordinates x^{a}, we can always find a frame of coordinate induced vector fields, i.e. we can choose $e_{a}=\partial_{a}$. However, the converse is not true: given a frame e_{a}, there does not always exist coordinates such that $e_{a}=\partial_{a}$. How can we see this?

If $e_{a}=\partial_{a}$, then we can easily see that $\left[e_{a}, e_{b}\right]=0$ for all pairs of basis vectors. However, for a general frame, there is no reason why the commutator must vanish. This actually leads to the correct converse: if $\left\{e_{a}\right\}$ are frame such that $\left[e_{a}, e_{b}\right]=0$, then locally there exist coordinates such that $e_{a}=\partial_{a}$ (Frobenius' theorem).

A perfect frame?

Wouldn't it be great if we could find a frame $\left\{e_{a}\right\}$ with the property that each frame vector field is parallel transported along all of the other frame vector fields? That is, where

$$
\nabla_{e_{a}} e_{b}=\nabla_{a} e_{b}=0 \quad \text { for all } a, b
$$

If we could find such a frame, then taking covariant derivatives would be easy:

$$
\begin{aligned}
\nabla_{X} Y & =\nabla_{X}\left(Y^{a} e_{a}\right)=X\left(Y^{a}\right) e_{a}+Y^{a} \nabla_{X} e_{a}=X\left(Y^{a}\right) e_{a}+Y^{a} \nabla_{X^{b} e_{b}} e_{a} \\
& =X\left(Y^{a}\right) e_{a}+Y^{a} X^{b} \nabla_{b} e_{a}=X\left(Y^{a}\right) e_{a},
\end{aligned}
$$

so $\left(\nabla_{X} Y\right)^{a}=X\left(Y^{a}\right)$: the components of the covariant derivative of Y would be the same as the derivatives of the components of Y.

We will show that it is impossible to find such a basis, unless the manifold is flat!

First choose a point p, and at p pick two of our basis vectors e_{a} and e_{b}. Construct the affinely parametrised geodesics through p with tangent vectors at p given by e_{a} and e_{b}.

Along the geodesic with initial tangent e_{a}, let's parallel transport both the vectors e_{a} and e_{b}, and let's call the resulting vectors $e_{(a, 1)}$ and $e_{(b, 1)}$. So these satisfy

$$
\begin{aligned}
\nabla_{e_{(a, 1)}} e_{(a, 1)}=0 & \nabla_{e_{(a, 1)}} e_{(b, 1)}=0 \\
\left.e_{(a, 1)}\right|_{p}=e_{a} & \left.e_{(b, 1)}\right|_{p}=e_{b} .
\end{aligned}
$$

Let's do the same thing along the geodesic with initial tangent e_{b}, forming the vectors $e_{(a, 2)}$ and $e_{(b, 2)}$:

$$
\begin{aligned}
\nabla_{e_{(b, 2)}} e_{(b, 2)}=0 & \nabla_{e_{(b, 2)}} e_{(a, 2)}=0 \\
\left.e_{(b, 2)}\right|_{p}=e_{b} & \left.e_{(a, 2)}\right|_{p}=e_{a} .
\end{aligned}
$$

Now, after moving an affine parameter length ϵ along the geodesic with initial tangent e_{a}, let's shoot off a geodesic in the direction of $e_{(b, 1)}$. Similarly, after moving an affine parameter length ϵ along the other geodesic, let's shoot off a geodesic in the direction of $e_{(a, 2)}$. These two geodesics will cross at a point q, forming a small "geodesic rectangle".

Now let's take some arbitrary vector V_{0} at p. We can parallel transport this in two ways to the point q around the edges of the rectangle. Let's call the vector that we get by initially moving in the direction of $e_{a} V_{1}$, and let's call the vector that we get by moving initially in the e_{b} direction V_{2}. Our goal is to calculate $V_{1}-V_{2}$ at the point q.

To make things as easy as possible, we'll compute the components of V with respect to normal coordinates at p, and we'll only do our calculations to leading order in ϵ.

First we calculate the components of V_{1} at the point A. Along the geodesic joining p to A, the components satisfy

$$
0=\left(\nabla_{e_{(a, 1)}} V_{1}\right)^{c}=\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(V_{1}\right)^{c}+\Gamma_{d e}^{c}\left(e_{(a, 1)}\right)^{d}\left(V_{1}\right)^{c}
$$

Since we move a parameter distance ϵ, and since the Christoffel symbols are smooth functions vanishing at p, we find that

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(V_{1}\right)^{c} \\
&=\mathcal{O}(\epsilon) \\
&\left.\Rightarrow\left(V_{1}\right)^{c}\right|_{A}=\left.\left(V_{1}\right)^{c}\right|_{p}+\mathcal{O}\left(\epsilon^{2}\right)=\left(V_{0}\right)^{c}+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Next let's compute the components of V_{1} at the point q. Along the curve joining A to q we have

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(V_{1}\right)^{c}+\Gamma_{d e}^{c}\left(e_{(b, 2)}\right)^{d}\left(V_{1}\right)^{e}=0 .
$$

Now, we can see that

$$
\begin{gathered}
\Gamma_{d e}^{c}=\left.\Gamma_{d e}^{c}\right|_{A}+\mathcal{O}\left(\epsilon^{2}\right) \\
\left(e_{(b, 2)}\right)^{d}=\left(e_{b}\right)^{d}+\mathcal{O}(\epsilon)
\end{gathered}
$$

Hence

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(V_{1}\right)^{c}+\left.\Gamma_{d e}^{c}\right|_{A}\left(e_{b}\right)^{d}\left(V_{1}\right)^{e}=\mathcal{O}\left(\epsilon^{2}\right)
$$

and moreover, the parameter distance from A to q is $\epsilon+\mathcal{O}\left(\epsilon^{2}\right)$.

Integrating this equation from A to Q, we find

$$
\begin{aligned}
\left.\left(V_{1}\right)^{c}\right|_{q} & =\left.\left(V_{1}\right)^{c}\right|_{A}-\left.\left.\epsilon \Gamma_{d e}^{c}\right|_{A}\left(e_{b}\right)^{d}\left(V_{1}\right)^{e}\right|_{A}+\mathcal{O}\left(\epsilon^{3}\right) \\
& =\left(V_{0}\right)^{c}-\left.\epsilon \Gamma_{d e}^{c}\right|_{A}\left(e_{b}\right)^{d}\left(V_{0}\right)^{e}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

Using the fundamental theorem of calculus, integrating along the geodesic from p to A we also have

$$
\begin{aligned}
\left.\Gamma_{d e}^{c}\right|_{A} & =\left.\Gamma_{d e}^{c}\right|_{p}+\int_{0}^{\epsilon} \frac{\mathrm{d}}{\mathrm{~d} \lambda} \Gamma_{d e}^{c} \mathrm{~d} \lambda \\
& =\int_{0}^{\epsilon}\left(e_{(a, 1)}\right)^{f} \partial_{f} \Gamma_{d e}^{c} \mathrm{~d} \lambda \\
& =\left.\epsilon\left(e_{a}\right)^{f} \partial_{f} \Gamma_{d e}^{c}\right|_{p}+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

Putting this all together, we find that

$$
\left.\left(V_{1}\right)^{c}\right|_{q}=\left(V_{0}\right)^{c}-\left.\epsilon^{2}\left(\partial_{f} \Gamma_{d e}^{c}\right)\right|_{p}\left(e_{a}\right)^{f}\left(e_{b}\right)^{d}\left(V_{0}\right)^{e}+\mathcal{O}\left(\epsilon^{3}\right)
$$

Repeating everything for V_{2}, we find that

$$
\left.\left(V_{1}\right)^{c}\right|_{q}-\left.\left(V_{2}\right)^{c}\right|_{q}=\left.\epsilon^{2}\left(\partial_{d} \Gamma_{f e}^{c}-\partial_{f} \Gamma_{d e}^{c}\right)\right|_{p}\left(e_{a}\right)^{f}\left(e_{b}\right)^{d}\left(V_{0}\right)^{e}+\mathcal{O}\left(\epsilon^{3}\right)
$$

Now, remember that we are working in normal coordinates at p. Hence these derivatives of the Christoffel symbols are the components of the Riemann tensor:

$$
\begin{aligned}
\left.\left(V_{1}\right)^{c}\right|_{q}-\left.\left(V_{2}\right)^{c}\right|_{q} & =\left.\epsilon^{2} R_{e d f}^{c}\right|_{p}\left(e_{a}\right)^{f}\left(e_{b}\right)^{d}\left(V_{0}\right)^{e}+\mathcal{O}\left(\epsilon^{3}\right) \\
& =\epsilon^{2}\left(R\left(e_{b}, e_{a}\right) V_{0}\right)^{c}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

If the curvature at p is nonzero, then the vectors V_{1} and V_{2} will generally differ at q.

What does this have to do with our original problem? Remember that we wanted a frame $\left\{e_{a}\right\}$ which satisfies $\nabla_{a} e_{b}=0$ for all a and b. The problem is that we can apply what we've just learned to one of these vectors, e.g. e_{c}. To find e_{c} at q, we can either parallel-transport it along the integral curves of e_{a} and then the integral curves of e_{b}, or vice-versa. However, this will yield different results for the vector e_{c} at q, unless the curvature vanishes!

Tensors vs linear maps

What exactly is the relationship between a linear map (like $R(X, Y)$) and a tensor (like the Riemann tensor R)?

To simplify things, let T be a rank $(1,1)$ tensor at p (easy to generalise to other rank tensors). Then we can construct a linear map as follows:

$$
\begin{aligned}
\tilde{T}: T_{p}(\mathcal{M}) & \rightarrow T_{p}(\mathcal{M}) \\
\eta(\tilde{T}(X)) & =T(X, \eta) \quad \text { for all covectors } \eta
\end{aligned}
$$

In abstract indices:

$$
(\tilde{T}(X))^{\mu}=T_{\nu}{ }^{\mu} X^{\nu}
$$

Conversely, let $\tilde{T}: T_{p}(\mathcal{M}) \rightarrow T_{p}(\mathcal{M})$ be a linear map. Then we can use this to define a $(1,1)$ tensor at p :

$$
T(X, \eta)=\eta(\tilde{T}(X))
$$

(This is just like what we did with the Riemann tensor).

Technically the tensor T and the linear map \tilde{T} are different objects, but they have the same "components" if we define the components of a linear map in the obvious way: with respect to a frame e_{a}, with dual f^{a},

$$
\begin{aligned}
& (\tilde{T}(X))^{a}=\tilde{T}_{b}{ }^{a} X^{b} \\
& \quad \Rightarrow \tilde{T}_{b}{ }^{a}=f^{a}\left(\tilde{T}\left(e_{b}\right)\right)=T\left(e_{b}, f^{a}\right)=T_{b}{ }^{a}
\end{aligned}
$$

