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Acceleration of Jacobi fields

In the lecture notes I wrote an equation of the form

∂2

∂2τ
J = ∇X∇X J,

and we later went on to show that this is equal to R(X , J)X . But
it’s not at all clear what I mean by the partial derivatives of the
vector field J – in fact, I only really wrote this expression to
suggest that we should think of ∇X∇X J as being like the
acceleration of J along the geodesic with tangent vector X .

This can be contrasted with the case of a scalar field: for any
scalar field f , we have

∂f

∂τ
= X (f ) = ∇X f ,

and similarly for higher derivatives.



An obvious way to interpret the expression ∂2

∂τ2
J is as the vector

field whose components are ∂2

∂τ2
Ja. But this depends on which

coordinates we choose – it’s not a coordinate-independent
expression.

In fact, if we use coordinates (τ, s, x2, x3), where x2 and x3 are
chosen so that the surface generated by the timelike geodesics is
given by x2 = x3 = 0 (so these coordinates are “transverse” to this
surface), then we find that

J =
∂

∂s
,

so the components of J are (0, 1, 0, 0). Hence the derivatives of
the components of J just vanish, if we use these coordinates!



There are some “coordinates” in which the derivatives of the
components of J are the same things as the components of the
vector ∇X∇X J. In fact, what we need are not coordinates but a
“frame”.

A frame is a set of vector fields ea, such that, at every point where
the frame is defined, these vectors span the tangent space. An
example of a frame is the set of coordinate induced vector fields ∂a
– but not all frames have to be of this form.



We set up our frame as follows: at the point τ = 0, along each
geodesic, we choose some frame. We then transport this frame
along the integral curves of X by parallel transport: that is, our
frame vector field satisfy

∇X ea = 0

for all a. If we want, we can choose e0 = X , since that ∇XX = 0.

These ea span the tangent space initially (i.e. at τ = 0). In fact,
they always span the tangent space, since their inner products with
one another don’t change as we move along the geodesics:

∂

∂τ
g(ea, eb) = X (g(ea, eb)) = g(∇X ea, eb) + g(ea,∇X eb) = 0,

and, if the matrix gab = g(ea, eb) is non-degenerate, then the
vectors {ea} span the tangent space.



Since the ea span the tangent space at each point along the
integral curves of X , we can expand the vector J in terms of this
basis:

J = Jaea.

The scalars Ja are the components of J relative to the frame ea.

Now let’s calculate the components of the vector ∇X∇X J:

(∇X∇X J)aea = ∇X∇X J = ∇X∇X (Jaea) = (∇X∇X J
a) ea =

∂2Ja

∂τ2
ea.

Hence, relative to this frame, the components of the vector
∇X∇X J are the same as the second derivatives of the components
of J.



Frames vs coordinates

Given some coordinates xa, we can always find a frame of
coordinate induced vector fields, i.e. we can choose ea = ∂a.
However, the converse is not true: given a frame ea, there does not
always exist coordinates such that ea = ∂a. How can we see this?

If ea = ∂a, then we can easily see that [ea, eb] = 0 for all pairs of
basis vectors. However, for a general frame, there is no reason why
the commutator must vanish. This actually leads to the correct
converse: if {ea} are frame such that [ea, eb] = 0, then locally
there exist coordinates such that ea = ∂a (Frobenius’ theorem).



A perfect frame?

Wouldn’t it be great if we could find a frame {ea} with the
property that each frame vector field is parallel transported along
all of the other frame vector fields? That is, where

∇eaeb = ∇aeb = 0 for all a, b.

If we could find such a frame, then taking covariant derivatives
would be easy:

∇XY = ∇X (Y aea) = X (Y a)ea + Y a∇X ea = X (Y a)ea + Y a∇X beb
ea

= X (Y a)ea + Y aX b∇bea = X (Y a)ea,

so (∇XY )a = X (Y a): the components of the covariant derivative
of Y would be the same as the derivatives of the components of
Y .

We will show that it is impossible to find such a basis, unless the
manifold is flat!



First choose a point p, and at p pick two of our basis vectors ea
and eb. Construct the affinely parametrised geodesics through p
with tangent vectors at p given by ea and eb.

Along the geodesic with initial tangent ea, let’s parallel transport
both the vectors ea and eb, and let’s call the resulting vectors e(a,1)
and e(b,1). So these satisfy

∇e(a,1)e(a,1) = 0 ∇e(a,1)e(b,1) = 0

e(a,1)
∣∣
p

= ea e(b,1)
∣∣
p

= eb.

Let’s do the same thing along the geodesic with initial tangent eb,
forming the vectors e(a,2) and e(b,2):

∇e(b,2)e(b,2) = 0 ∇e(b,2)e(a,2) = 0

e(b,2)
∣∣
p

= eb e(a,2)
∣∣
p

= ea.



Now, after moving an affine parameter length ε along the geodesic
with initial tangent ea, let’s shoot off a geodesic in the direction of
e(b,1). Similarly, after moving an affine parameter length ε along
the other geodesic, let’s shoot off a geodesic in the direction of
e(a,2). These two geodesics will cross at a point q, forming a small
“geodesic rectangle”.

Now let’s take some arbitrary vector V0 at p. We can parallel
transport this in two ways to the point q around the edges of the
rectangle. Let’s call the vector that we get by initially moving in
the direction of ea V1, and let’s call the vector that we get by
moving initially in the eb direction V2. Our goal is to calculate
V1 − V2 at the point q.





To make things as easy as possible, we’ll compute the components
of V with respect to normal coordinates at p, and we’ll only do our
calculations to leading order in ε.

First we calculate the components of V1 at the point A. Along the
geodesic joining p to A, the components satisfy

0 = (∇e(a,1)V1)c =
d

dλ
(V1)c + Γc

de(e(a,1))
d(V1)c .

Since we move a parameter distance ε, and since the Christoffel
symbols are smooth functions vanishing at p, we find that

d

dλ
(V1)c = O(ε)

⇒ (V1)c
∣∣
A

= (V1)c
∣∣
p

+O(ε2) = (V0)c +O(ε2).



Next let’s compute the components of V1 at the point q. Along
the curve joining A to q we have

d

dλ
(V1)c + Γc

de(e(b,2))
d(V1)e = 0.

Now, we can see that

Γc
de = Γc

de

∣∣
A

+O(ε2)

(e(b,2))
d = (eb)d +O(ε).

Hence

d

dλ
(V1)c + Γc

de

∣∣
A

(eb)d(V1)e = O(ε2).

and moreover, the parameter distance from A to q is ε+O(ε2).



Integrating this equation from A to Q, we find

(V1)c
∣∣
q

= (V1)c
∣∣
A
− εΓc

de

∣∣
A

(eb)d(V1)e
∣∣
A

+O(ε3)

= (V0)c − εΓc
de

∣∣
A

(eb)d(V0)e +O(ε3).

Using the fundamental theorem of calculus, integrating along the
geodesic from p to A we also have

Γc
de

∣∣
A

= Γc
de

∣∣
p

+

∫ ε

0

d

dλ
Γc
dedλ

=

∫ ε

0
(e(a,1))

f ∂f Γc
dedλ

= ε(ea)f ∂f Γc
de

∣∣
p

+O(ε2).



Putting this all together, we find that

(V1)c
∣∣
q

= (V0)c − ε2(∂f Γc
de)
∣∣
p
(ea)f (eb)d(V0)e +O(ε3).

Repeating everything for V2, we find that

(V1)c
∣∣
q
− (V2)c

∣∣
q

= ε2(∂dΓc
fe − ∂f Γc

de)
∣∣
p
(ea)f (eb)d(V0)e +O(ε3).

Now, remember that we are working in normal coordinates at p.
Hence these derivatives of the Christoffel symbols are the
components of the Riemann tensor:

(V1)c
∣∣
q
− (V2)c

∣∣
q

= ε2Rc
edf

∣∣
p
(ea)f (eb)d(V0)e +O(ε3)

= ε2 (R(eb, ea)V0)c +O(ε3).



If the curvature at p is nonzero, then the vectors V1 and V2 will
generally differ at q.

What does this have to do with our original problem? Remember
that we wanted a frame {ea} which satisfies ∇aeb = 0 for all a and
b. The problem is that we can apply what we’ve just learned to
one of these vectors, e.g. ec . To find ec at q, we can either
parallel-transport it along the integral curves of ea and then the
integral curves of eb, or vice-versa. However, this will yield different
results for the vector ec at q, unless the curvature vanishes!



Tensors vs linear maps

What exactly is the relationship between a linear map (like
R(X ,Y )) and a tensor (like the Riemann tensor R)?

To simplify things, let T be a rank (1, 1) tensor at p (easy to
generalise to other rank tensors). Then we can construct a linear
map as follows:

T̃ : Tp(M)→ Tp(M)

η(T̃ (X )) = T (X , η) for all covectors η.

In abstract indices: (
T̃ (X )

)µ
= T µ

ν X ν



Conversely, let T̃ : Tp(M)→ Tp(M) be a linear map. Then we
can use this to define a (1, 1) tensor at p:

T (X , η) = η(T̃ (X )).

(This is just like what we did with the Riemann tensor).



Technically the tensor T and the linear map T̃ are different
objects, but they have the same “components” if we define the
components of a linear map in the obvious way: with respect to a
frame ea, with dual f a,(

T̃ (X )
)a

= T̃ a
b X b

⇒ T̃ a
b = f a(T̃ (eb)) = T (eb, f

a) = T a
b .


