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Take another vector Z0 at p, and transport it in the same way as the
vector V0. Then we can take the inner products of (V1 − V2) with either
Z1 or Z2 at p.

Z [1 (V1 − V2) = g(V1 − V2,Z1) = ε2R(Z [0 ,V0, eb, ea) +O(ε3).

For a metric-compatible connection, the inner product g(V ,Z ) is
constant as we parallel-transport things around the rectangle, so
g(V1,Z1) = g(V0,Z0) = g(V2,Z2). Hence

g(V1 − V2,Z1) = g(V1,Z1)− g(V2,Z1)

= g(V2,Z2)− g(V2,Z1) = g(V2,Z2 − Z1),

so R(Z [0 ,V0, eb, ea) = −R(V [
0 ,Z0, eb, ea) +O(ε).



Torsion

Now consider a metric with nonvanishing torsion. We can no longer work in
normal coordinates at p, so the Christoffel symbols at p don’t vanish.

Let’s work in coordinates where the point p is at the origin, and do calculations
to order ε2. Moving a parameter distance ε along a geodesic in the X a

direction, we arrive at the point with coordinates xa = Aa, where

d2xa

dλ2
= −Γa

bc
dxb

dλ

dxc

dλ

xa(0) = 0
dxa

dλ
(0) = X a,

so we see that Aa = εX a − ε2Γa
bc
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p
X bX c +O(ε3).

Parallel transporting the vector Y along this integral curve we form the vector
Y1,

d(Y1)a

dλ
= −Γa

bc(Y1)b(X1)c .



So Y1 at the point A has components

(Y1)a = Y a − εΓa
bc

∣∣
p
Y bX c +O(ε2).

Hence the point p1 has coordinates

(p1)a = ε(X a + Y a)− ε2Γa
bc
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p
Y bX c +O(ε3).

Following first the integral curve of the vector Y2 and then X2, we find that

(p2)a = ε(X a + Y a)− ε2Γa
bc

∣∣
p
Y bX c +O(ε3),

and so

(p1)a − (p2)a = ε2
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= ε2T a
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= ε2 (T (Y ,X ))a +O(ε3).



This gives an interpretation of the torsion tensor: if we travel a
distance ε in the X direction and then in the Y direction then we
reach the point p1, while travelling first in the Y direction and
then the X directions takes us to the point p2. The vector
T (Y ,X ) points from p2 to p1: following a geodesic in the
direction of this vector for a unit distance will take us (to leading
order in ε) from p2 to p1.





A calculation

X aY b[∇a,∇b]Z c = X aY b (∇a∇b −∇b∇a)Z c

= X a∇a(Y b∇bZ
c)− (X a∇aY

b)∇bZ
c

− Y b∇b(X a∇aZ
c) + (Y b∇bX

a)∇aZ
c

= ∇X∇YZ
c −∇Y∇XZ

c

− (∇XY −∇YX )a∇aZ
c

=
(
∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z

)c



Generalities about Lagrangians

Given a Lagrangian L(x , ẋ , λ), where ẋa = dxa

dλ , the Euler-Lagrange
equations are

d
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)
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= 0.

Now consider a different Lagrangian L̃ = f (L). The Euler-Lagrange
equations for L̃ are
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.

So, if f ′ 6= 0 and dL
dλ = 0, then both L and L̃ lead to the same

Euler-Lagrange equations.



Next consider a Lagrangian which is independent of λ. Then the
associated Hamiltonian is constant:

H := ẋa
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Lagrangians for geodesics

Choosing L =
√
|gab(x)ẋaẋb|, this Lagrangian is

reparametrisation invariant: if x(λ) extremises the action,
then so does x(λ′), where λ′ is any monotonic function of λ.
This can be shown either by

checking that the Euler-Lagrange equations are equivalent, or
checking directly that the action is invariant.

We can choose any parameter λ which we like; an affine
parameter is any choice such that L is constant.

Choosing an affine parameter, we can instead use the
Lagrangian L′ = gab(x)ẋaẋb. This gives the same
Euler-Lagrange equations, but now the parameter must be an
affine parameter.

The Hamiltonian associated with L′ is H = L′, so L′ is
constant.



Solving the Einstein equations coupled to matter

Consider a scalar field φ solving ∇µ∇µφ = 0, with
energy-momentum tensor

Tµν = ∇µφ∇νφ−
1

2
gµν∇αφ∇αφ.

Then to solve “the Einstein equations coupled to matter” we need
to solve the system of equations

Gµν = 8πTµν

∇µ∇µφ = 0.

To solve these equations we need to give initial data for the scalar field:
φ “at time zero” and the normal derivative of φ “at time zero”. We also
need to give something like “the metric and time zero” and the “time
derivative of the metric at time zero”.


