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(V1)°[, = (Va)°], = Rl (€2)" (en)(V0)© + O(€?)

= 2 (R(ep, €2) Vo) + O(%).
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Take another vector Zy at p, and transport it in the same way as the
vector Vo. Then we can take the inner products of (V4 — V5) with either
Zy or Z5 at p.

ZH(Vi — Vo) = g(Vi — Vo, Z1) = €R(Z5, Vo, ep, €) + O(€7).

For a metric-compatible connection, the inner product g(V, Z) is
constant as we parallel-transport things around the rectangle, so
g(\/l, Zl) = g(Vo,Zo) = g(VQ,Zz). Hence

gVi— W2, 21) = g(V1, Z1) — g(Va, Z1)
=g(Va,22) — g(Vo, Z1) = g(Va, 2o — Z4),

so R(Z5, Vo, e, €2) = —R(VE, Zo, e, €,) + O(e).



Torsion

Now consider a metric with nonvanishing torsion. We can no longer work in
normal coordinates at p, so the Christoffel symbols at p don't vanish.

Let's Work in coordinates where the point p is at the origin, and do calculations
to order €2. Moving a parameter distance ¢ along a geodesic in the X?
direction, we arrive at the point with coordinates x° = A?, where

d2xa e dx® dx¢
dX2 TPy A
dx?

) =0  T(0)=X°

so we see that A% = eX? — 62F2c|prX‘ +0(é%).
Parallel transporting the vector Y along this integral curve we form the vector
Y1,

d(Y1)?
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So Yi at the point A has components
(V1)" = Y —elic| YPX“+O(e).
Hence the point p; has coordinates
(P1)” = (X + Y7) = €Tc| Y X + O(e).
Following first the integral curve of the vector Y2 and then X3, we find that
(P2)" = e(X* + Y*) = €Tic| YX“ + O(e),
and so

() = (p2) = € (Fie], = T3, Y*X° + O()
=& Tgc}PYbXC +0O(&)

= (T(Y, X)) 4+ 0().



This gives an interpretation of the torsion tensor: if we travel a
distance € in the X direction and then in the Y direction then we
reach the point p;, while travelling first in the Y direction and
then the X directions takes us to the point p>. The vector
T(Y,X) points from py to p;: following a geodesic in the
direction of this vector for a unit distance will take us (to leading
order in €) from p to p;.






A calculation

X2YPIV,, V) Z¢ = X2YP (V. V), — V,pV,) Z€

= XV, (YPV,Z9) — (X7V, YD)V, Z€
— YPV,(X?V,Z°) + (YPV, X2V, Z¢

= VxVyZE — VyVxZ©
— (VxY = VyX)?V,Z°

= (VxVyZ = VyVxZ - Vixv2)°



Generalities about Lagrangians

Given a Lagrangian L(x,x,\), where x? = d)\ , the Euler-Lagrange

equations are
d oLy oL —0
dX \ 0x? ox?

Now consider a different Lagrangian [= f(L). The Euler-Lagrange
equations for L are
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So, if f/ # 0 and dL =0, then both L and L lead to the same
Euler-Lagrange equatlons




Next consider a Lagrangian which is independent of A. Then the

associated Hamiltonian is constant:
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Lagrangians for geodesics

o Choosing L = +/|gap(x)x2xP|, this Lagrangian is
reparametrisation invariant: if x(\) extremises the action,
then so does x(\’), where X' is any monotonic function of A.
This can be shown either by

o checking that the Euler-Lagrange equations are equivalent, or
o checking directly that the action is invariant.
o We can choose any parameter \ which we like; an affine
parameter is any choice such that L is constant.

o Choosing an affine parameter, we can instead use the
Lagrangian L' = g,p(x)%?%>. This gives the same
Euler-Lagrange equations, but now the parameter must be an
affine parameter.

o The Hamiltonian associated with L’ is H= L', so L' is
constant.



Solving the Einstein equations coupled to matter

Consider a scalar field ¢ solving V¥V ¢ = 0, with
energy-momentum tensor

1 «
T,uz/ = vu¢vu¢ - Eg/wv ¢va¢~

Then to solve “the Einstein equations coupled to matter” we need
to solve the system of equations

G =817,

VAV .6 = 0.

To solve these equations we need to give initial data for the scalar field:
¢ “at time zero” and the normal derivative of ¢ “at time zero”. We also
need to give something like “the metric and time zero” and the “time
derivative of the metric at time zero”.



