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Is there always a singularity inside a black hole?

A black hole region is defined as a region of spacetime from which
no physical signals can escape to infinity. Does this necessarily
mean that there is a singularity?

In a sense, yes: in the black hole region, there will generally be
trapped surfaces: 2D surfaces whose area decreases when you drag
the surface along in both the “outgoing” and “ingoing” null
directions. The event horizon itself is marginally trapped: when
you move along outgoing radial null geodesics its area remains
constant (4π(2M)2), while the area decreases if you drag it along
ingoing null geodesics.

Penrose’s famous singularity theorem (or incompleteness theorem)
states that, if you have a trapped surface, then the resulting
spacetime (formed by evolving initial data) is geodesically
incomplete.



However, geodesic incompleteness is not the same as a singularity
in the ordinary sense of the word. One way in which a solution to
the Einstein equations (taken to mean the maximal development of
some initial data) can be geodesically incomplete is to have a
singularity which is “strong enough’ to prevent us from continuing
to solve the Einstein equations.

But this is not the only way – it can be that, instead of existence
of a larger manifold failing (because of a singularity), uniqueness of
a larger manifold fails. This is actually what happens inside
(perfectly angularly symmetric, asymptotically flat etc. etc.) black
holes. The Kretschmann scalar remains bounded, and tidal forces
are finite as you approach the “boundary” of spacetime.

Penrose’s strong cosmic censorship conjecture states that generic
black holes, it is existence rather than uniqueness which fails, and
so there is a “proper” singularity.



All of this may be somewhat academic when it comes to “real”
black holes: we expect quantum gravity to be important in regions
where the curvature is large, and many physicists expect that
quantum gravity will somehow remove singularities.

But we don’t know quantum gravity, and these classical arguments
might be important anyway in showing that the curvature does
grow large.



Matter vs. mass

In relativity, we don’t really distinguish between energy and mass
(remember E = mc2). In GR, for general asymptotically flat
spacetimes, we can determine the total energy/mass of the
spacetime. This is the constant M in the Schwarzschild metric.
This includes contributions from all of the different types of matter
that are present, as well as the energy of the gravitational field. In
the case of Schwarzschild, no matter is present, so all of the energy
comes from the gravitational field.

Matter, on the other hand, is all of the stuff which contributes to
the energy-momentum tensor – it could be electromagnetic fields,
fluids, dust etc. If there is some matter present in the solution then
it will have some mass, but the mass is only partially contributed
by the matter itself: some of the “mass” will be due to energy in
the gravitational field.



What is “space at a given time”?

There is no unique definition – any “spacelike hypersurface” will do (a
spacelike hypersurface is a surface with a timelike normal. Locally, these
surfaces can be realised as the level sets of functions t, with dt a timelike
covector field).

If you think of yourself as “at rest”, then it is natural to choose a
hypersurface orthogonal to the tangent vector of your worldline (i.e. if
the tangent to your worldline is X , then X ∝ −(dt)]), then locally this
will look like “space at a given time” for an inertial observer in
Minkowski space.

In a homogeneous and isotropic spacetime, there are special spatial
surfaces – namely, the surfaces which are homogeneous and isotropic
spaces! Then it is natural to use these surfaces.

An observer only “sees” things travelling to their worldline along null or
timelike lines, i.e. they see the interior of their past null cones. However,
they will think of these signals as having been sent at some point in the
past.





What is this group action and how does it work?

Let G be a group that acts on the manifold: for every p ∈M and
every x , y ∈ G , we have

φx(p) ∈M

φx(φy (p)) = φx ·y (p),

and we also require φe(p) = p.
For homogeneous and isotropic spacetimes, the group action also
maps the level sets of τ to themselves: if τ |p = τ1, then
τ |x(p) = τ1. So it can also be thought of as a group action on the
spatial slices, considered as submanifolds.



The group action is by isometries: informally, it “preserves the metric” or
is a “symmetry of the manifold”. This means that, for all points p ∈M,
all vectors X , Y ∈ Tp(M), and all group elements x ∈ G ,

g(X ,Y ) = g((φx)∗X , φx)∗Y ).

What is (φx)∗X? It’s the pushforward of the vector X by the map φx .
You can think of it as “the vector in Tφx (p)(M) which corresponds ot the
vector X ∈ Tp(M)”.

How do you find this “corresponding vector”? First, take a curve γ
through p, with tangent vector (in the equivalence class) X at p. Then
we can compose this with φx to get a curve φx ◦ γ, through φx(p). The
tangent vector of this curve at φx(p) is (in the equivalence class)
(φx)∗X !

Informally, when we use G to move the points on the manifold around,
and we also move the vectors around in a natural way, then the metric
doesn’t change.



Comoving observers

For every pair of unit vectors orthogonal to the worldline of a
comoving observer, there is an isometry mapping one vector to the
other.

In most cases, the only isometries guaranteed to us are those given
by the homogeneous and isotropic conditions, and these only give
us isometries of the spatial slices – hence, in general, the “vectors
orthogonal to the worldline” must also lie tangent to the spatial
slices. But this means that these vectors are also orthogonal to
(dτ)]:

g
(

(dτ)],X
)

= (dτ)(X ) = X (τ) = 0,

because X is tangent to the level sets of τ . So the tangent to the
worldline of a comoving observer must, in general, be proportional
to (dτ)] (and actually equal to −(dτ)], with the standard
normalisation conventions).



Why do I only say in general? Because there are some spaces with
extra symmetries: isometries which rotate vectors that do not lie
tangent to one of the spatial slices.

For example, Minkowski space is homogeneous and isotropic, and
we can use the standard time coordinate t as a time function.
However, any inertial observer is an isotropic observer (we can
perform rotations relative to “their” spatial slices), not just the
ones moving along integral curves of −(dt)] = ∂t .



What does “future-pointing” mean?

We always assume that our manifolds are equipped with a
time-orientation: a smooth function τ with dτ a nonzero, timelike
covector field. Then we say X is future-directed if X (τ) > 0, or
equivalently if g(X ,−(dτ)]) < 0 (note that −(dτ)] is itself
future-directed).

If we work with spacetimes constructed by starting with initial
data, and then solving the Einstein equations as evolution
equations, then we get such a function “for free”. In cosmological
spacetimes, we also have such a function for free. However, there
are spacetimes where such functions cannot be defined! If we lived
in such a spacetime, then you could go around some path in
spacetime and return to Earth, only to find yourself travelling the
opposite direction in time to everyone else. . .



Isotropy implies homogeneity

How do we show that isotropy implies homogeneity? Recall that
isotropy means that ∃ an isometry mapping any unit vector to any
other unit vector, while homogeneity means that ∃ an isometry
mapping any point to any other point.

First, consider two points p and q which are close together; we’ll
show that there’s an isometry mapping p to q. We first choose a
point r which is equidistant between p and q (recall that we are
working on a spatial slice, which is a Riemannian manifold):

inf
{γ:γ(0)=r ,γ(1)=p}

∫ 1

0

√
g(γ̇, γ̇)dλ = inf

{γ:γ(0)=r ,γ(1)=q}

∫ 1

0

√
g(γ̇, γ̇)dλ.



Now consider the geodesics beginning from r : γ1 joins r to p, and
γ2 joins r to q (these can be shown to exist if p, q and r are
sufficiently close together).

By isotropy, there is an isometry mapping γ̇1

∣∣
r

to γ̇2

∣∣
r
. Since this

is an isometry, it also maps the entire geodesic γ1 to the geodesic
γ2 (because geodesics depend only on the metric, which is
invariant). Moreover, it maps points the point which is a proper
distance d along the geodesic γ1, to the point which is a proper
distance d along γ2 (because proper distance only depends on the
metric, which is invariant). Hence it maps p to q.

To “globalise” this argument, we simply “chain together” many of
these local isometries.







More on homogeneity and isotropy

Suppose the group G acts on our manifold by isometries. Let
p ∈M, and consider the stabilizer of p, that is, the set of group
elements x with φx(p) = p. This is a subgroup of G.

By isotropy, the stabilizer subgroup H acts on the tangent space to
the spatial slices at p by “isometries” (now we are talking vector
space isometries carried out by a linear map, where the vector
space Tp(Σt) is equipped with the metric (g |Σt )|p and the linear
map is the “differential” of φx). Moreover, H acts transitively on
this space, so (assuming the action is also effective) H ∼= SO(3).



Now choose an arbitrary point p ∈M. Since G acts transitively
on M, we can identify p with the identity e ∈ G , and then for
every other point q ∈M, we can identify q with some x ∈ G
where φx(p) = q.

In fact, there are multiple group elements which would lead to the
same q (and group elements which fix the point p), corresponding
to the stabilizer subgroup H. So in fact, points on the manifold
can be identified with cosets xH, i.e. M can be identified with the
group quotient G/H.

In general, you can form a homogeneous and isotropic space in n
dimensions by taking a Lie group G of dimension n(n + 1)/2 with
a subgroup isomorphic to SO(n), and then considering the space
of cosets G/SO(n). For example, S3 ∼ SO(4)/SO(3).


