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CNN encoder (Papyan et al. 16")

Autoencoder encoder map
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Consider a deep conv. net composed of two convolutional layers:
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The forward map (note notation using transpose of W():

=0 (b(2> +(WYT, (b<1> + (W(l))Tx))

https://arxiv.org/pdf/1607.08194.pdf
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Deconvolutional NN data model (Papyan et al. 16")

Autoencoder decoder map
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Consider a deep conv. net composed of two convolutional layers:
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Two layer deconvolutional data model with weight matrices fixed,
W) = D;, and T; > 0 whose values compose data element X.
https://arxiv.org/pdf/1607.08194.pdf
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Generative deep nets (Goodfellow et al. 14")

Generative model from 100 latent variables
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Example of a deep convolutional generator:
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Goodfellow et al. 14")

Generative model from 100 latent variables
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Train the two network parameters using the objective

min maxpn™* 2_)1 log(D (X, i) + Pt Z log (1 — D(G(25), ¥»))

stochastic gr:
minator, A, is

Algorithm 1 Miniba
steps to apply to the d
experiments.
for number of trai
for i steps do

ve adversarial nets. The number of
1. the least expensive option. in our

ining of g
. We used A&

ing iterations do

- mple minibatch of 772 noise samples {=z(1, ..., ="} from noise prior p,(=).
e Sample minibatch of 72 examples {x(), ... "} from data generating distribution
Paaa (T

e Update the discriminator by ascending its stochastic gradient:

V,,‘,'I:’ ; [lnu. D (@) +i1og (1 — D (& (:“’))ﬂ X

end for
e Sample minibatch of 772 noise samples {=(1)
e Update the generator by descending its stocha

, =)} from noise prior p,(=).
tic gradient:

Vou 3otom (1= 2 (@ (=) -

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Radford et al. 16") S

Early training examples Mathematical
Institute

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

https://arxiv.org/pdf/1511.06434.pdf

Oxford GANSs and adversarial examples
Mathematics


https://arxiv.org/pdf/1511.06434.pdf

Generative deep nets (Radford et al. 16")

Later training examples
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Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

https://arxiv.org/pdf/1511.06434.pdf
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Wasserstein GAN (Arjovsky et al. 17")

Optimal transport decoder
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One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of X — 10, 7zenine — b, v —

0.0001, B = 0, B> = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Tcritic, the batch size 1, Adam hyperparameters v, 31, 32.

Regquire: initial critic parameters wq, initial generator parameters 60g.

while 6 has not converged do

1:

2: fort — 1,

3: fori — 1

4: Sample real data  ~ P, latent variable z ~ p(z). a random number ¢ ~ U [0, 1].
5: & <+ Go(=z

6: T < ex + (1 —e)x

7: LD < Dy(&) — Duw(x) + A(||VaDuw(@)||2 — 1)?
8: end for

9: w <+ Adam(V ., 5 S0 L5 w, o, B, B2)
10: end for
11: Sample a batch of latent variables {=z() }7 | ~ p(=z).
12: 0 < Adam (V5 327 | — D, (Go(2)). 0., B, B2)

13: end while

https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1701.07875.pdf
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Wasserstein GAN (Arjovsky et al. 17")

Examples of output from GAN architectures

Mathematical
Institute

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)
5 T

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

https://arxiv.org/pdf/1704.00028. pdf
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Wasserstein GAN (Arjovsky et al

Training rate

17)
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Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for
the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs

comparably to DCGAN.

https://arxiv.org/pdf/1704.00028.pdf
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Large scale WGAN (Karras et al. 18")

Growing the encoder/decoder complexity Mathematical
Institute
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Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synt| in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

https://arxiv.org/abs/1710.10196

Oxford GANSs and adversarial examples
Mathematics


https://arxiv.org/abs/1710.10196

Large scale WGAN (Karras et al. 18")

Examples of synthetic faces
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chlight 3 2e W,
i order to exelude image backaround and focus the scarch on ln.\lghlnb facial features

https://arxiv.org/abs/1710.10196

Oxford GANSs and adversarial examples 12
Mathematics


https://arxiv.org/abs/1710.10196

Adversarial examples for deep nets (Goodfellow et al. 15")

Imperceptible perturbation changes classification
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GooglLeNet’s classification of the image. Here our ¢ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

https://arxiv.org/pdf/1412.6572.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15")

Many algorithms exist for computing adversarial examples
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Algorithm 2 DeepFool: multi-class case

1: imput: Image x., classifier f.
2: output: Perturbation 7.
3:
4: Inidalize x¢o <— @, 2 <— O.
5: while &£ (x;) = k(xo) do
&: for %k # k(axo) do
7: W), — VS ( @) — Sy ()
8: Sl < (@) — friao (@)
o: end for

7 s S
10: [ «— argming__z .. TJL?’W‘E

17

11: T < ”wl
12: X4 — d;; + T
13: z <— 7z + 1
14: end while
15: retarm 7 — > . 7;

Alternative to Goodfellow approach of

P(xu) = esign(grad, J(0; Xy, yu)-
https://arxiv.org/pdf/1511.04599.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15")

Many algorithms exist for computing adversarial examples
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Classifier Test error | p,q, [DeepFool] | time Paav [4] time Pagv [18] time
LeNet (MNIST) 1% 2.0x 107 110ms | 1.0 20ms | 25x107! | >4s
FC500-150-10 (MNIST) 1.7% L1x 107! 50ms | 39%x1071 | 10ms | 1.2x 1071 | > 25
NIN (CIFAR-10) 11.5% 2.3 x 1072 1100ms | 1.2x 1071 | 180ms | 24 x 1072 | >50's
LeNet (CIFAR-10) 22.6% 3.0x 1072 20ms | 1.3x 107" | 50ms | 3.9x1072 | >7s
CaffeNet (ILSVRC2012) | 42.6% 2.7x1073 510 ms* | 3.5 % 1072 | 50 ms*

GoogLeNet (ILSVRC2012) | 31.3% 1.9x1073 800 ms* | 4.7 x 1072 | 80 ms*

Table 1: The adversarial robustness of different classifiers on different datasets. The time required to compute one sample
for each method is given in the time columns. The times are computed on a Mid-2015 MacBook Pro without CUDA support.
The asterisk marks determines the values computed using a GTX 750 Ti GPU.

Average relative error of adversarial example 7(x) such that

F(x) # Fx+ P(x)): Paay(F) = D71 X ep LN
https://arxiv.org/pdf/1511.04599.pdf
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Rotations and Translations for CNNs (Engstrom et al. 18")

Adversarial action in space of a known invariant
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Figure 1: Examples of adversarial transformations and their
predictions in the standard and "black canvas" setting.

https://arxiv.org/pdf/1712.02779.pdf

Oxford GANSs and adversarial examples
Mathematics


https://arxiv.org/pdf/1712.02779.pdf

Rotations and Translations for CNNs (Engstrom et al. 18’)

Loss landscape over known invariant Mathematical
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MNIST CIFAR-10 ImageNet

Xent Loss
Xent Loss
Xent Loss.

Figure 3: Loss landscape of a random example for each dataset when performing left-right translations and rotations.
Translations and rotations are restricted to 10% of the image pixels and 30 deg respectively. We observe that the landscape
is significantly non-concave, making rendering FO methods for adversarial example generation powerless. Additional
examples are visualized in Figureﬂof the Appendix.

https://arxiv.org/pdf/1712.02779.pdf
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Universal adversary (Moosavi-Dezfooli et al. 16")

A single perturbation for many classes
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Transferability between nets (Liu et al. 16")

Can transfer adversarial examples between nets

RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
-ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 17.25 0% 1% 0% 0% 0%
ResNet-50 | 17.25 0% 0% 2% 0% 0%
-VGG-16 | 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 17.41 0% 0% 0% 0% 5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, 7) corresponds to the accuracy of the attack generated using four models except model 7 (row)
when evaluated over model j (column). In each row, the minus sign “—” indicates that the model
of the row is not used when generating the attacks. Results of top-5 accuracy can be found in the
appendix (Table|14).

RMSD is the £ energy of the perturbation.
https://arxiv.org/pdf/1611.02770.pdf
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Transferability between nets (Liu et al. 16')

Can transfer adversarial examples between nets Mathematica
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Figure 3: Decision regions of different models. We pick the same two directions for all plots: one is
the gradient direction of VGG-16 (x-axis), and the other is a random orthogonal direction (y-axis).
Each point in the span plane shows the predicted label of the image generated by adding a noise to
the original image (e.g., the origin corresponds to the predicted label of the original image). The
units of both axises are 1 pixel values. All sub-figure plots the regions on the span plane using the
same color for the same label. The image is in Figure |2}

https://arxiv.org/pdf/1611.02770.pdf
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Adversarial physical object: Turtle (Athalye et al. 17")

Physical objects can be adversarial examples: 3D
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Figure 1. Randomly sampled poses of a 3D-printed turtle adver-
sarially perturbed to classify as a rifle at every viewpoint>. An

unperturbed model is classified correctly as a turtle nearly 100%
of the time.
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Adversarial graffiti (Eykholt et al.

Physical objects can be adversarial examples: 2D

17")
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Table 5: A camouflage art attack on GTSRB-CNN. See
example images in Table[I] The targeted-attack success rate

is 80% (true class label: Stop, target: Speed Limit 80).
Distance & Angle  Top Class (Confid.) Second Class (Confid.)
5 0° Speed Limit 80 (0.88) ~ Speed Limit 70 (0.07)
57 15° Speed Limit 80 (0.94)  Stop (0.03)
5730° Speed Limit 80 (0.86) ~ Keep Right (0.03)
57 45° Keep Right (0.82) Speed Limit 80 (0.12)
5’ 60° Speed Limit 80 (0.55)  Stop (0.31)
107 0° Speed Limit 80 (0.98) ~ Speed Limit 100 (0.006)
10 15° Stop (0.75) Speed Limit 80 (0.20)
107 30° Speed Limit 80 (0.77) ~ Speed Limit 100 (0.11)
Figure 1: The left image shows real graffiti on a Stop sign, 1570° Specd Limit 80 (0.98)  Speed Limit 100 (001)
. L .. 157 15° Stop (0.90) Speed Limit 80 (0.06)
something that most humans would not think is suspicious. BT SpeedLmits0 @95 SpeedLimit 0 Q003)
The right image shows our a physical perturbation applied 207157 SpecdLimic$0(0.97) _Speed Limit 100 (0.01)
. . . I . 25 0° Speed Limit 80 (0.99)  Speed Limit 70 (0.0008)
o a Stop sign. We design our perturbations to mimic grafiti, W0 SpeedLimit 80099  SpeedLimit 1000002
and (hllS “hide in ‘.he human psychevﬂ 40" 0 Speed Limit 80 (0.99) ~ Speed Limit 100 (0.002)
Oxford GANSs and adversarial examples
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