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Adversarial attacks for neural networks

Adversarial examples are intentionally designed optical illusions, where such inputs to learned models cause the
model to make a mistake. Mathematically, given a point x € {2 drawn from class y, a scalar ¢ > 0, and a metric d,
we say that x admits an adversarial example in the metric d if there exists a point x* € Q with Class(x*) # y, and
d(x,x*) < e. In practice d is chosen as ¢P-norms with £>° being the most popular choice, which limits the absolute
change that can be made to any one dimension of x.

1. Taskl: Write a short report summarizing the fast gradient sign method (FGSM) for adversarial attacks!.
Your report should be written in the format and style of a NIPS Proceedings, abridged to not exceed 2 pages.
Latex style files and an exemplar template are provided on the course page, and are similar to last exercise.

2. Task2: One Layer Net: Consider the neural net defined as § = SM(Wx) trained with the cross-entropy loss
L(x,y), where SM denotes softmax activation. Let x* be the adversarial image of x resulting from FGSM
attack with constant e. Prove that Ve > 0 we have L(x*,y) > L(x,y)

3. Task3: Two Layer Net: Consider the neural net defined as § = SM(VoWx) trained with the cross-entropy

loss L(x,y), where V, W are weights, SM denotes softmax activation and o is ReLU activation. Suppose

every element of Wx is non-zero, if € < “|)|Vv)\cf‘\|mmv then prove that L(x*,y) > L(x,y),

given the fact that for j = 1,2,...; sign(Wx),; = sign(Wx");

Thttps://arxiv.org/pdf/1412.6572.pdf



Solution:

1. The loss for a example x and true class s can be expressed as:

L(x,y) = crossentropy (softmax(Wx), y)
= —In(softmax(Wx);)
exp(Wx)s

- _ln[exp(WX)z +exp(Wx)2 + ... + eXp(Wx)k]

now each element of vector x* is expressed as:
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Assuming the hypothesis is true we have to prove:
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where a = [ajaz ...]7. By property of softmax and Jensen’s inequality the RHS can be lower bounded by:

k
RHS > exp() _ € softmax(Wx);(Wa),;) (4)

J
and hence we just need to prove
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where the result follows from (2) and fact that xsign(x) > 0



2. Let T = VoW lie., y = Tx and define the following index set (and using property given in the problem):

A={i: Wx; >0} ={i: Wx] > 0}. (6)

Here x € R?, V € RF¥l and W € R*". Then we can express the operator T as a linear operator:
l

(Tx),; = Zvjta(wtlxl + WeaZo + ...+ WinXy)
t
= virlwnzr +wers + ... + Winzy)
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The loss for a example x and true class s can be expressed as:

L(x,y)

crossentropy (softmax(Tx), y)
—In(softmax(Tx);)

exp(T), |
exp(Tx)a + exp(Tx)2 + ... + exp(Tx); "’

—ln[

which reduces to problem 1 with one linear layer.



