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Backpropogation: weight initialisation (Glorot et al.” 10)

Observed vanishing gradient Mathematical
Institute

OXFORD

Vanishing/exploding gradients was considered by Xavier Glorot and
Yoshua Bengio (2010), using the same model assumptions as
Pennington, h() being approximately N(0,02) and:

“Our objective heres is to understand why standard gradient descent
from random initialization is doing so poorly with deep neural networks....
we study how activations and gradients vary across layers and during
training, with the idea that training may be more difficult when the
singular values of the Jacobian associated with each layer are far from 1.
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http://proceedings.mlr.press/v9/glorot10a.html
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Backpropogation: weight initialization (Glorot et al.” 10) -

Variance normalization; precursor to Pennington with o), = 0 Mathematical
Institute

Glorot initialization follows from seeking the variance of both the
backpropogation gradient and forward activations to maintain the
same variance per layer: for W) € R"*" need 02, = 1/3n.

http://proceedings.mlr.press/v9/glorot10a.html
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Batch normalization (loffe et al. 15")

Bulk normalization hyperparameters

Mathematical
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Alternatively, bulk weight and bias normalizations, 7, and 3, can

be learned as part of the net parameters 6.

Input: Values of & over a mini-batch: B = {@1. ., }:
Parameters to be learned: ~, 3
Output: {y; — BN, g(x;)}
1
B <— o 12:1 ax; // mini-batch mean
1o
2 2 PR -
<——E x; — // -batch variz
o5 e 2 (x; I3) mini-batch variance
T <— ﬂ // normalize
4 o’é -+ €
Y <— vyx; + 3 = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to

activation & over a mini-batch.

https://arxiv.org/pdf/1502.03167.pdf
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Batch normalization experiment (loffe et al. 15")

Improved initial convergence rates
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Model Steps to 72.2%  Max accuracy
Inception 31.0-10° 722%
: BN-Baseline 13.3-10° 72.7%
T poentn BN-x5 2.1-10 73.0%
L BN-x30 2.7-10° 74.8%
+ - BN-45-Sigmoid BN-x5-Sigmoid 69.8%
4 Steps to match Inception
M M 1M M M sM Figure 3: For Inception and the batch-normalized

variants, the number of training steps required to
Figure 2: Single crop validation accuracy of Inception  reach the maximum accuracy of Inception (72.2%),
and its batch-normalized variants, vs. the number of — and the maximum accuracy achieved by the net-
training steps. work.

https://arxiv.org/pdf/1502.03167.pdf
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Convexifying CNN parameters pt. 1 (Zhang et al. 16")

The CNN structure has further non-convexity

Insti

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.

Rather than working with x directly, form P vectors z,(x) for
p=1,..., P where z,(x) is the portion of x on patch p of the
convolutional layer. Then the kth component of H(x, 8) is given by

H(x,0)x = Zzalw po(w; ZP(X))
j=1 p=1
Alternatively if we exclude the nonlinearity we can express this by:

ZZakJPUW Zp(x ZZ
Jj=1p=1

where Z(x) has z,(x) as its p* row.
https://arxiv.org/pdf/1609.01000.pdf
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Convexifying CNN parameters pt. 2 (Zhang et al. 16")

Low-rank non-convexity of CNNs

Using the trace formula this can be further condensed to

Hix, 0 =tr | Z(x) [ D wiaf; | | = tr(Z(x)Ax)
j=1
R I I I E I B |

The network parameters are given by Ay nonlinearity is imposed by
the Ay having rank r, and we can express all of the parameters of
the matrix by A which is similarly rank r.
https://arxiv.org/pdf/1609.01000.pdf
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Convexifying CNN parameters pt. 3 (Zhang et al. 16")

Convex relaxations are commonly used regularisers

Mathematical
Institute

One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in ¢2 by By and By respectively, then one can replace
then the sum of the singular values of A are bounded by By B,ry/n
where n is the network output dimension, the network parameters
can be considered by varying the nuclear norm bound between 0
and BlBgr\/ﬁ.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.
https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: MNIST (Zhang et al. 16") .

Improved accuracy for shallow nets Mathematical
Institute

basic | rand rot img imgt+rot
SVM, 45 [44] 3.03% | 14.58% | 11.11% | 22.61% | 55.18%
NN-1 [44] 4.69% | 20.04% | 18.11% | 27.41% | 62.16%
CNN-1 (ReLU) | 3.37% | 9.83% | 18.84% | 14.23% | 45.96%
CCNN-1 2.38% | 7.45% | 13.39% | 10.40% | 42.28%
TIRBM [33] 4.20% 35.50%

SDAE-3 [44] 2.84% | 10.30% | 9.53% | 16.68% | 43.76%
ScatNet-2 [8] 1.27% | 12.30% | 7.48% | 18.40% | 50.48%
PCANet-2 [9] | 1.06% | 6.19% | 7.37% | 10.95% | 35.48%
CNN-2 (ReLU) | 2.11% | 5.64% | 827% | 1017% | 32.43%
CNN-2 (Quad) | 1.75% | 5.30% | 883% | 11.60% | 36.90%
CCNN-2 1.38% | 4.32% | 6.98% | 7.46% | 30.23%

Table 1: Classification error on the basic MNIST and its four variations. The best performance
within each block is bolded. The tag “ReLU” and “Quad” means ReLU activation and quadratic
activation, respectively.

https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: CIFAR10 (Zhang et al. 16")

Monotonically decreasing training objective
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Table 3: Classification error on the CIFAR-

10 dataset. The best performance within

Error rate

CNN-1 34.14%
CCNN-1 23.62%
CNN-2 24.98%
CCNN-2 20.52%

SVMFastfood [27]
PCANet-2 [9]
CKN [30]
CNN-3
CCNN-3

36.90%
22.86%
21.70%
21.48%
19.56%

each block is bolded.
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Figure 4: The convergence of CNN-3 and
CCNN-3 on the CIFAR-10 dataset.

Table 4: Comparing the original CNN and the one whose top convolution layer is convexified by

CCNN. The classification errors are reported on CIFAR-10.

https://arxiv.org/pdf/1609.01000.pdf
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