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DNN Loss function and trainable parameters
High dimensional loss function

Consider a fully connected L layer deep net given by

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

for ` = 1, . . . , L with nonlinear activation φ(·) and W (`) ∈ Rn`×n` .
The trainable parameters for the DNN, θ := {W (`), b(`)}L`=1 are
learned by minimizing a high dimensional, |θ| ∼ n2L, loss function
such as

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

nL∑
i=1

(H(xµ(i); θ)− yi ,µ)2.

The shape of L(θ) and our knowledge about a good initial
minimizer θ(0) strongly influence our ability to learn the parameters
θ for the DNN.
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Landscape loss function: VGG9 (Li et al. 18’)
One dimensional views of a loss landscape

DNN loss L(θ) between two minimizers, θs(1− α) + αθl trained
with small and large batches; horizontal axis α in (a) and (d).

VGG9 is a CNN (Simonyan et al. 15’)

https://arxiv.org/pdf/1409.1556.pdf

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Landscape loss function: VGG9 (Li et al. 18’)
One and two dimensional landscape near SGD minima

Impact of training rate weight decay and batch size on level curves
of L(θ∗ + αδ + βη). Larger batch size narrows the loss function.
Weight decay broadens the loss function.

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Loss landscape example: ResNet skip (Li et al. 18’)
Architecture influences landscape: depth and skip connections

No-short is a standard fully connected DNN, ResNet (He et al.
15’) has additional connections between every second layer.

https://arxiv.org/pdf/1512.03385.pdf

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Loss landscape example: ResNet-56 (Li et al. 18’)
Loss landscapes are generally highly non-convex

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Loss landscape example: ResNet skip (Li et al. 18’)
Architecture influences landscape: width

Increasing width over parameterises the net and broadens minima.

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Topology of loss landscape (Freeman et al. 16’)
Number of connected components

Consider our loss function: L(θ;X ,Y ) = n−1
∑n

µ=1 l(θ; xµ, yµ)
and its associated level set

ΩL(λ) = {θ : L(θ;X ,Y ) ≤ λ}

Of particular interest are the number of connected components, say
Nλ, in ΩL(λ). If Nλ = 1 for all λ then L(θ;X ,Y ) has no isolated
local minima and any descent method can obtain a global minima.

If Nλ > 1 there may be “spurious valleys” in which the minima in
the connected component does not achieve the global minima.
https://arxiv.org/pdf/1611.01540.pdf
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Topology of loss landscape (Freeman et al. 16’)
There are datasets for which ReLU has a complex landscape

Linear network: single component

Let H(x ; θ) be an L layer net given by h(`) = W (`)h(`−1) with W (`) ∈
Rn`×n`−1 , then if n` > min(n0, nL) for 0 < ` < L, the sum of squares
loss function has a single connected component

ReLU network: multiple components

Let H(x ; θ) be an L layer net given by h(`) = σ(W (`)h(`−1)) with
W (`) ∈ Rn`×n`−1 and σ(·) = max(0, ·), then for any choice of n`
there is a distribution of data (X ,Y ) such that there are more than
one single connected component.
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Topology of loss landscape: (Venturi et al. 16’)
Over parameterisation can generate a single connected component

ReLu activation network: nearly connected

Consider a 2 layer ReLu network H(x , θ) = W (2)σ(W (1)x) with W (1) ∈
Rm×n and W (2) ∈ Rm, then for any two parameters θ1 and θ2 with L(θi ) ≤
λ for i = 1, 2, then there is a path γ(t) between θ1 and θ2 such that

L(θγ(t)) ≤ max(λ,m−1/n).

quadratic activation network: single component

Let H(x , θ) be an L layer net given by h(`) = σ(W (`)h(`−1)) with W (`) ∈
Rn`×n`−1 and quadratic activation σ(z) = z2, then once the number of

parameters n` ≥ 3N2`

where N is the number of data entries, then the

sum of squares loss function has a single connected component. For the

two layer case with a single quadratic activation this simplifies to n > 2N.

https://arxiv.org/pdf/1802.06384.pdf
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Summar: influences on the loss landscape
Impact of: architecture, depth, width, batch size, weight decay

I Smaller mini-batches and weight decay seem to find
minimisers θ∗ with in wider basins, resulting in less sensitivity
to L(θ∗ + ε) for small ε.

I Inclusion of skip connections, ie. ResNet architectures, and/or
increased over parameterisation through greater width appear
to give wider less complex landscapes.

I There are theoretical results indicating that width and over
parameterisation result in landscapes for which minimisers are
simply connected.
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