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Stochastic gradient descent (SGD)

Scalability and induced stochasticity

Given a loss function £(6; X, Y), gradient descent is given by
o0+ — (k) _ . grad, £(6, X, Y)

with 7 is referred to as the stepsize, or in DL the “learning rate.”
In DL £(6; X, Y) is the sum of m individual loss functions for m
data point: £(6; X, Y) = m™ 3", 1(6; X, y,)

For m > 1 gradient descent is computationally too costly and
instead one can break appart the m loss functions into
“mini-batches” and repeatedly solve

o1 — 9 — | A | Lgrad, Z 1(0; X, yyu)-
HENK
This is referred to as stochastic gradient descent as typically Ay is

chosen in some randomized method, usually as a partition of [m]
and a sequence of Ag which cover [m] is referred to as an “epoch.”
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Stochastic gradient descent: challenges and benefits

Learning rates, batch sizes, and induced noise

Mathematical
Institute

> SGD is preferable for large m as it reduces the per iteration
computational cost dependence on m to instead depend on
|Ak| which can be set by the user as opposed to m which is
given by the data set.

» SGD, and gradient descent, require selection of a learning rate
(stepsize) which in deep learning is typically selected using
some costly trial and error heuristics.

> The learning rate is typically chosen adaptively in a way that
satisfies Y 3o, mk = 0o and Y 30 ; n7 < oo; in particular as
me ~ k7.

» The optimal selection of learning weight, and selection of A,
depends on the unknown local Lipschitz constant
lgrad/(01; X, yu) — grad!(62; xu, yu)l| < Lu|61 — 2]
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SGD improvement: momentum

Improved convergence rate: minimizing over larger subspaces

Insti

There are many improvements of SGD typically used in practise for
deep learning; particularly popular is Polyak momentum:

glt1) — gk) 4 g(etk) — gk=1)) _ . grad, L (9(‘0)

or Nesterov's accelerated gradient:

ok = 9t 1 g(etk) — glk-1))
gltl) = G _ o . grad,L (é(k)>

These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

VE—1 VE—
Polyak NGES and NAG N

k—1

rates are: Normal GD ,
rk+1
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SGD improvement : Adaptive sub-gradients (Duchi et al. 11')

Preconditioning via past gradient information (AdaGrad) Mathematical
Institute

Preconditioning improves convergence rate of line-search methods

is preconditioning. Let g(K)(9(k)) =: grad,£(#(¥)) be the gradient

of the training loss function at iteration k and
k 2

Be(iri) = [ 3 (e9(09)(h)

=1

the diagonal of the square—rjoot of the sum of prior gradient

outer-products. Adaptive sub-gradients (AdaGrad) is

preconditioned GD via the diagonal matrix B

0D = 60 — A |71 (BY) + el)"tgrady D 1(0: Xy, )-
HENK

1/2

el > 0 added to avoid poor scaling of small values of B (i, /).
http://jmlr.org/papers/volumel2/duchilla/duchilla.pdf
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AdaGrad improvements: RMSProp and AdaDelta

Alternative gradient weighting and step-sizes

AdaGrad preconditions with the inverse of

Bi(i,1) = (Sia (8900 (0)7) "

RMSProp (Hinton) gives more weight to the current gradient
2
BEMS (i, 1) = vBRYE (i, 1) + (1 - ) (8X(6W)(1))
for some v € [0, 1] and updates as

0T = 9 — A [ TH(BW + el) " 2grady > 1(0; %, yu)-
HEN
AdaDelta (Zeiler 12') extends AdaGrad using a similar
preconditioned as B;SMS, but also estimates the stepsize using an
average difference in (k) — g(k=1),
https://arxiv.org/abs/1212.5701
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Adaptive moment estimation (Adam) (Kingma et al. 15')

SGD with adaptive momentum

Mathematical
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Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are o = 0.001,
B1 = 0.9, B> = 0.999 and ¢ = 10~%. All operations on vectors are element-wise. With 3} and B4
we denote 3, and 3 to the power ¢.
Require: «: Stepsize
Require: 31,32 € [0, 1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters 6
Require: 6y: Initial parameter vector
mg < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2™ moment vector)
t <— 0 (Initialize timestep)
while 6, not converged do
t<«t+1
gt < Vo fi(6,—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < PB1-mu—1 + (1 — B1) - g (Update biased first moment estimate)
Vg 4 P v + (1 — Ba) - g'f (Update biased second raw moment estimate)
iy < my/(1 — B1) (Compute bias-corrected first moment estimate)
vy «— v /(1 — 4) (Compute bias-corrected second raw moment estimate)
0, < 0,1 — o -y /(\/0; + €) (Update parameters)
end while
return 6, (Resulting parameters)

https://arxiv.org/pdf/1412.6980.pdf
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Adaptive moment estimation (Adam) (Kingma et al. 15')
Training on MNIST Mathematical

Institute

N MNIST Multilayer Neural Network + dropout

— AdaGrad
RMSProp

— SGDNesterov.
AdaDelta

— Adam
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Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using

dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

https://arxiv.org/pdf/1412.6980.pdf
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Adaptive moment estimation (Adam) (Kingma et al. 15')
Training on CNNs for CIFAR-10

Mathematical
Institute
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Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

https://arxiv.org/pdf/1412.6980.pdf
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AdaGrad: as adaptive stepsize rule (Ward et al. 18)

Scalar diagonal preconditioning

Let g (0(K)) =: grady£(¥)) be the gradient of the training loss

function at iteration k, AdaGrad preconditions with
k N 2 i
Be(iri) = [ 3 (e9(09)(h)
j=1
which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

UL = 0 — A |7 (BX) + el)Tgrady > 1(68: X, y)-
HEN,
A simplified version, focusing on the per iteration (as opposed to
per index) update is to let By = byl where b7, = b + ||g ())3.
https://arxiv.org/pdf/1806.01811.pdf
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AdaGrad: scalar update in batch setting (Ward et al. 18')

Iteration complexity

Scalar AdaGrad update algorithm: Initialize with 6(®) and by > 0

by = bi,1+||grad9£(0("))|]%
90 = k=1 _ p Lgrad,£(s)

For £() € C}, that is L minimal for which

llgradg L(61) — gradyL£(02)]|2 < L||#1 — 62| for all 81,62, then scalar
batch AdaGrad satisfies ming—; 71 ||grad,£(0(K))||3 < ¢ for
either

T = 1+{25%(9(0))(1)0+2£(9<°>))] if bo>L, or

= 1+ [ (L2 = B+ 4(L(0) + (3/4 + log (L/bo))L)?) |
if bg < L. In contrast, if by is a fixed constant b, then if b < L/2
GD can diverge, while if b> L then T = 2be1£(8(9).
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Scalar AdaGrad: proof ingredients (Ward et al. 18’)

Iteration complexity

Iteration complexity for scalar batch AdaGrad following properties
for any non-negative values aj,...,ar with a; > 0, (with ax
taking the place of ||grady£(6(%))|3)

-
Z <log (Z a,>+1 and Z
/=1 ZI 1 aj

Also, for any fixed € € (0,1] and L, by > 0, the iterates
bi+1 = bi + ak has the property that after

N = [eY(L% — b2)] + 1 iterations either min)'_3 ax < € or by > L.

Lastly, letting ko be the first iterate such that by, > L, then for all
k > ko by < by,—1 4+ 2£(0%0~1)) (bounded above) and
L£(0to=1)) < L (1 + 2log(bk,—1/b0)) (not diverged).
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Scalar AdaGrad: stochastic (Ward et al. 18")

Influence of mini-batch or other gradient approximation Mathematical
Institute

Let g(%) be an unbiased estimator of the gradient grad,£(8()) of
the training loss function at iteration k; that is
E(g(k)) = grad, £(9(k)) Moveover, let there be a uniform bound
E(||g 13) < c . Then consider the stochastic scalar AdaGrad
date as
P b = by +g™3
o) — glk=1) _ b, 1g(k),
Unlike in the batch version of AdaGrad where by converges to a

fixed stepsize, stochastic AdaGrad converges roughly at the rate
by =~ Cgk1/2. Morevover Ward et al. showed that

3/2
min (E||grad9£(9(k))||4/3) <0 (

bo + ¢ Cq b o
¢=0,....N—1 + log(Ncg / bg).

N N1/2
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Scalar AdaGrad examples (Ward et al. 18')

MNIST with batch gradients

OXFORD
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-+~ AdaGrad -=- SGD Constant -~ SGD LinearDecay -+ SGD SqrtDecay
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Figure 1: Batch setting on MNIST. Top (bottom) row are plots of train (test) accuracy with respect
to the initialization bg. The left 6 figures are for logistic regr n (LR) with snapshots at epoch 5,
20 and 60 in the 1st, 2nd and 3rd column respectively. The right 6 figures are for two fully connected
layers (FC) with snapshots at epoch 5, 20 and 60 in the 4th, 5th and 6th column.

https://arxiv.org/pdf/1806.01811.pdf
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MNIST with mini-batch gradients

Scalar AdaGrad examples (Ward et al. 18')

OXFORD
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Figure 2: Stochastic setting on MNIST. Left 6 figures by logistic regression and right 6 figures by
two fully connected layer. Note that the scale of y-axis change. See Figure 1 for reading instruction.

https://arxiv.org/pdf/1806.01811.pdf
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Scalar AdaGrad examples (Ward et al. 18') o

CIFAR-10 with mini-batch gradients Mathematical

Institute
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Figure 3: Stochastic setting on CIFARI10. Left 6 figures by LeNet and right 6 figures by ResNet.
Note that the epoch (see title) is different from previous figures and no momentum is used. See
Figure 1 for reading instruction.

https://arxiv.org/pdf/1806.01811.pdf
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