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Sum of squares loss

Loss function for a simple fully connected two layer NN

Mathematical
Institute

Consider a data set X € R"™™ of m data entries in R", associated
target outputs (such as labels) Y € R™*™ (for simplicity we let
n, = n), and (very) simple two layer net:
h s(WMxp)
hy W@ py

note, no bias, and ¢(-) = max(0, -)
note, no bias or nonlinear activation.

The output of the net is H(x,; #) = ¥, and we measure the value
of the net through the average sum of squares:

L£=(2m)? Z Z(?i,u — Yin)?
y=1i=1

and define a weighted loss accuracy as e = n~1L
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Hessian for two layer net (without activation)

Omitting diagonal nonlinear activation matrices.
Inst

" entry of the output for

Let e, = i, — yiu be the error in the /*
data entry indexed by s, and 6 = {W® W@} € R2" be the net
parameters, then the hessian of the loss function has entries

0*L
H = — = H H
8 = Bg.00, oM
with positive semi-definite and error dependent components:

_ 9Yi . 0%, _
(ol = >3 D0, 00y~ e

p=1i=1
2~
8 I7l”’

[Fhlas := m 122 90,005

p=1i=1

There are mn data entries and 2n?> NN parameters, with 7 = 2n/m
the relative over (7 > 1) or under (7 < 1) parameterisation.
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Loss function landscape through Hessian eigenvalues

Local shape of loss landscape

Institute

Functions, say £, which have hessians that are:

» positive definite (all positive eigenvalues) are convex and have
a single global minima and unique minimiser,

> positive semi-definite have single global minima but
non-unique minimiser due to the null-space

» indefinite (positive and negative eigenvalues) are non-convex
and may be a complicated landscape with multiple local
minimisers.

For the simple two layer network we considered the network has
Hessian H = Hy + H; with Hy positive semidefinite and of size
independent of the error, while Hy is indefinite with magnitude
depending on the size of e, = Vi, — Vi u-
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Landscape via random matrix theory (Pennington et al. 17")

Modelling assumptions for tractable analysis

Mathematical
Institute

One

can interpret properties of the landscape through the Hessian

by considering simplified models:

>

>

>

The weights are i.i.d. random normal variable,
The data are i.i.d. random variables,

The residuals e; , = i , — ¥i,, are normal random variables,
say N(0,2¢) with € = n=1L (which also allows the gradient to
vanish as m, n — oo while m/n remains fixed; the focus is on
fixed points where the gradient is zero),

The matrices Hy and H; are freely independent which allows
us to compute the spectra of Hyp + H; from their individual
spectra.

http://proceedings.mlr.press/v70/penningtoni7a.html
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Wigner and Wishart distributions

Deterministic eigenvalue distributions of random matrices: the large n, p limit.

Mathematical
Institute

Wigner matrices, entries drawn A(0,52), have eigenvalues drawn
from the semi-circle law:

L Vac2 =2 if |\ <20
— 2702 —
pse(N) { 0 otherwise

Wishart matrices, X = JJT product of J € R"*P drawn
N(0,52/p) have eigenvalues drawn from the Marchenko-Pastur
distribution:

B \) ifr=n/p<1
pmp(A) = { 'E)l _ 7_1)5()\) + p(N\) otherwisep

where p(A) := (27Ao7) /(A = A_)(A4 — A) for A € [A_, A\4]
and Ay = o (1 £ /7).
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Stieltjes and R Transforms of probability distributions

Method to compute the spectrum under addition.

Institute

The probability distribution of the sum of two (freely independent)
random matrix distributions can be calculated using the transforms:

For z € C/R the Stieltjes Transform, G,(z), of a probability distri-
bution and its inverse are given by

t
Gp(z) = /R zp(—)tdt and  p(\)=—71! eir& Imag(G,(X + ie)).
The Stieltjes and R Transform of p are related by the solutions of
R,(Gy(2)) +1/Gy(z) = z and has the property that if p; and p»
are freely independent then R, 1 ,, = Ry, + R,,.

https://terrytao.wordpress.com/tag/stieltjes-transform-method/
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Recall the Hessian for two layer net (without activation)

Stieltjes and R Transform for joint spectra

Mathematical

Let e, = Vi, — yiu be the error in the it" entry of the output for

data entry indexed by u, and 6 = {W(l), W(2)} € R2™ be the net
parameters, then the hessian of the loss function has entries

0°L
Hop=——+
0 90,004
with positive semi-definite and error dependent components:

_ i 0, _
[Hola,s := m 122 B = m U ey

=: Hy+ H;

00, 00g
p=1i=1
m n
0%y,
H = -1 i — L .
[ 1]0475 m ;;eaﬂagaaeﬁ

Where we assumed that Hy and H; can be modelled as being
drawn from Wishart and Wigner distributions respectively.

Oxford Random DNN training landscape: Hessian eigenvalues

Mathematics



Landscape via random matrix theory (Pennington et al. 17")

OXFORD
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Using the Pennington model (7 = ¢ = 2n/m and € = n=1£) we

have pry(A) = pmp(A; 1,7) and pry (A) = psc(A; v2e).
Their R transforms are respectively

1

- 1—2z71

RHO and RHl = 2627

from which follows the probability distribution, py(A; €, 7):

1.0
1.0, 14
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Figure 1. Spectral distributions of the Wishart + Wigner approximation of the Hessian for three different ratios of parameters to data
points, ¢. As the energy e of the critical point increases, the spectrum becomes more semicircular and negative eigenvalues emerge.

http://proceedings.mlr.press/v70/penningtoni7a.html
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Fraction of negative eigenvalues (Pennington et al. 17")

Breakpoint dependence on €. and oversampling T

Consider the fraction of negative eigenvalues of py(A):

0
ae,7) = / pH(A €, T)dA.

—00

For prn(A) modelling the Hessian of the two layer net, when « is
small it is well approximated by

e —e. |32
a(e, 7) = ap(T) <
€c
where
1
ce= (1207 - 872 + (1 + 87)%?).

http://proceedings.mlr.press/v70/penningtoni7a.html
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The two layer ReLU net (Pennington et al. 17")

Now including a ReLU nonlinear activation

The introduction of the ReLU nonlinear activation changes the Hessian,
roughly setting to zero half of the entries and generating a block
off-diagonal structure in Hy with Ry1(z) = 5.

Continuing to model Hy as Wishart (less clear an assumption):

For py(A) modelling the Hessian of the two layer net, when « is

small it is well approximated by

3/2
€ — €c
where

a(e, T) = do(7)

€c

027 — 186 — €2 +86%/2)
< 327(1—7)3 ’

with ¢ =1+ 167 — 872

http://proceedings.mlr.press/v70/penningtonl7a.html
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Empirical values of €. and « (Pennington

Match of empirical and analytical calculations

et al. 17")
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(a) Index of critical points versus energy (b) Energy of S Versus p s/data points

Figure 6. Empirical observations of the distribution of critical points in single-hidden-layer tanh networks with varying ratios of param-
eters to data points, ¢. (a) Each point represents the mean energy of critical points with index v, averaged over ~200 training runs. Solid
lines are best fit curves for small & & aple — e(‘\“/"’. The good agreement (emphasized in the inset, which shows the behavior for small
«) provides support for our theoretical prediction of the 3/2 scaling. (b) The best fit value of €. from (a) versus ¢. A surprisingly good fit

is obtained with ¢, = %(1 — ¢)°. Linear networks obey ¢, = %(1 — ¢). The difference between the curves shows the benefit obtained

from using a nonlinear activation function.

http://proceedings.mlr.press/v70/penningtonl7a.html
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