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DNN Jacobian
Input-Output map: behaviour of small perturbations

Consider a fully connected L layer deep net given by

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

for ` = 1, . . . , L with nonlinear activation φ(·) and W (`) ∈ Rn`×n` .

Its Jacobian is given by

J =
∂h(L)

∂x (0)
= ΠL

`=1D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(h

(`)
i ).

Which, amongst other things, can bound the local stability of the
DNN: ‖H(x + δ; θ)− H(x ; θ)‖ = ‖Jδ +O(‖δ‖2)‖ ≤ ‖δ‖max‖J‖.
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DNN Jacobian
Gradient back-propagation: role of DNN Jacobian

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

nL∑
i=1

(H(xµ(i); θ)− yi ,µ)2

Letting δ` := ∂L
∂h(`) and as before D(`) the diagonal matrix with

D
(`)
ii = φ′(h

(`)
i ) we have

δ` = D`(W (`))T δ`+1 and δL = D(L)gradh(L)L.

which gives the formula for computing the δ` for each layer as

δ` =
(

ΠL−1
k=`D

(k)(W (k))T
)
D(L)gradh(L)L.

and the resulting gradient gradθL with entries as

∂L
∂W (`)

= δ`+1 · hT` and
∂L
∂b(`)

= δ`+1
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Spectrum of the Jacobian pt. 1(Pennington et al. 18’)
How to compute the product of D(`)W (`)

Computing the spectrum of products of matrices, e.g. for

J = ∂h(L)

∂x(0) = ΠL
`=1D

(`)W (`) where D
(`)
ii = φ′(h

(`)
i ).

Stieltjes and S Transforms

For z ∈ C/R the Stieltjes Transform, Gρ(z), of a probability distribution
and its inverse are given by

Gρ(z) =

∫
R

ρ(t)

z − t
dt and ρ(λ) = −π−1 lim

ε→0+

Imag(Gρ(λ+ iε)).

The Stieltjes Transform and moment generating function are related by

Mρ(z) := zGρ(z) − 1 =
∑∞

k=1
mk

zk
, and the S Transform is defined as

Sρ(z) = 1+z
zM−1

ρ (z)
. The S Transform has the property that if ρ1 and ρ2 are

freely independent then Sρ1ρ2 = Sρ1Sρ2 .

https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2(Pennington et al. 18’)
Moment generating functions

The S Transform of JJT with J = ∂h(L)

∂x(0) = ΠL
`=1D

(`)W (`) is then
given by

SJJT = SLD2SLWTW .

This can be computed through the moments MJJT (z) =
∑∞

k=1
mk

zk
,

MD2(z) =
∑∞

k=1
µk
zk

, and SWTW = σ−2
w

(
1 +

∑∞
k=1 skz

k
)

where

µk =
∫

(2π)−1/2φ′
(√

q(?)z
)2k

e−z
2/2dz .

In particular: m1 = (σ2
wµ1)L and σ2

wµ1 = χ is the growth factor we
observed before, requiring χ = 1 to avoid rapid convergence of
correlations to fixed points.
https://arxiv.org/pdf/1802.09979.pdf
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Random DNN recursion map (Poole et al. 16’)
Norm of hidden layer output dependence on prior layer

Let q(`) = n−1
` ‖h

(`)‖2
2 be the average squared `2 length of the

pre-activation h(`) = W (`)z(`−1) + b(`) at layer `, then with W (`)

and b(`) being drawn from N (0, σ2
w/n`) and N (0, σ2

b/n`)
respectively, we can express the evolution of the length as

q(`) = σ2
wn
−1
`−1‖φ(h(`−1))‖2

2 + σ2
b.

Replacing the average squared length n−1‖ · ‖2
2 for large n by the

squared integral we could instead consider the propagation

q(`) := σ2
w

∫
(2π)−1/2φ

(√
q(`−1)z

)2

e−z
2/2dz + σ2

b.

https://arxiv.org/pdf/1606.05340.pdf
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Random DNN recursion map (Poole et al. 16’)
Norm of hidden layer output dependence on prior layer

The average squared length q` = N−1‖h(`)‖2
2 of the pre-activation

following the recursion

q(`) := σ2
w

∫
(2π)−1/2φ

(√
q(`−1)z

)2

e−z
2/2dz + σ2

b.

has a fixed point q? = σ2
w

∫
(2π)−1/2φ

(√
q(?)z

)2
e−z

2/2dz + σ2
b

whose stability governs the ability of the network to train. In fact,
the growth of a perturbation is given by the expected mean
singular value of JT J which is given by

χ = σ2
w

∫
(2π)−1/2φ′

(√
q(?)z

)2

e−z
2/2dz .

https://arxiv.org/pdf/1606.05340.pdf
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Stability of pre-activation lengths (Pennington et al. 18’)
The “Edge of Chaos Curve” for φ(·) = tanh(·).

https://arxiv.org/pdf/1802.09979.pdf
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Network variance control through depth (Abrol 19’)
Edge of chaos curves for other nonlinear activations

The pre-activation output of networks converge to a zero-mean
Gaussian distribution with variance, q∗, specified by the nonlinear
activation, weight and bias variance, σw and σb respective.
The distribution of the network input-output spectrum has a mean
at layer d given by χd . Level curves of χ = 1 overcome the
exponential dependence on depth and allow training.

Initialisation on this curve allows training very deep networks.
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Nonlinear activation stability (Pennington et al. 18’)
Examples of moment generating functions

Where MD2(z) =
∑∞

k=1
µk
zk

with

µk =
∫

(2π)−1/2φ′
(√

q(?)z
)2k

e−z
2/2dz . For W Gaussian s1 = −1

where as for W orthogonal s1 = 0. Note that for all nonlinear
activations for µ1σ

2
w = 1, σ2

JJT
grows linearly with L.

Linear φ(·): q∗ = σ2
wq
∗ + σ2

b, and fixed point (σw , σb) = (1, 0).
ReLU φ(·): q∗ = 1

2σ
2
wq
∗ + σ2

b, and fixed point (σw , σb) = (
√

2, 0).
Hard Tanh and Erf have curves as fixed points χ(σw , σb).
https://arxiv.org/pdf/1802.09979.pdf
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Distribution of activations φ′(z) (Pennington et al. 18’)
µk =

∫
(2π)−1/2φ′

(√
q(?)z

)2k
e−z2/2dz.

https://arxiv.org/pdf/1802.09979.pdf
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Distribution of Jacobian spectra (Pennington et al. 18’)
Observed universality of spectra based on φ(·)

https://arxiv.org/pdf/1802.09979.pdf
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Summary of random DNN initialisation
Dependence between σw , σb, φ(·)

I Poole et al. 16’ showed pre-activation output is well modelled
as Gaussian with variance q∗ determined by σw , σb, φ(·).
Moreover, the correlation between two inputs follows a similar
map with correlations converging to a fixed point, with the
behaviour determined in part by χ where χ = 1 avoids
correlation to the same point, or nearby points diverging.
https://arxiv.org/pdf/1606.05340.pdf

I Pennington et al 18’ showed more generally how to compute
the moments for the Jacobian spectra, where χ = 1 is needed
to avoid exponential growth or shrinkage with depth of
gradients.
https://arxiv.org/pdf/1802.09979.pdf
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