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DNN Jacobian

Input-Output map: behaviour of small perturbations

Consider a fully connected L layer deep net given by
A0 = w0 4 pO 2D = p(rh), ¢=0,...,L -1,
for £ =1,..., L with nonlinear activation ¢(-) and W) ¢ Rmxne,

Its Jacobian is given by

L) L
A @Ow
J (O MNy_, DWW
where D() is diagonal with entries Di(ié) = gb’(h,(e)).
Which, amongst other things, can bound the local stability of the
DNN: [[H(x +8;0) — H(x; )| = [[J0 + O([|a[I*)II < [|o][max]|J]].
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DNN Jacobian

Gradient back-propagation: role of DNN Jacobian

L(6; X, Y) ZZ ~Yiu)
pn=1i=1
Letting &y := % and as before D) the diagonal matrix with
DI,(I,E) — ¢>’(h,(.£)) we have
5 =D (WNTs, 1 and 6, = DBgrad, L.
which gives the formula for computing the §, for each layer as
5 = (ni;;o(k)(w(k))T) DWgrad, L.

and the resulting gradient grad, L with entries as

Y ; Y
W = 5(4_]_ . hg and m = 5g+1
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Spectrum of the Jacobian pt. 1(Pennington et al. 18")

How to compute the product of DO W)

Computing the spectrum of products of matrices, e.g. for
J= ghﬁéi = I_lé':1D(£)W(€) where D,.(I.E) — ¢/(hl@))_

For z € C/R the Stieltjes Transform, G,(z), of a probability distribution
and its inverse are given by

Gy(2) :/]R r(t) dt and p(\)=—7""1 lim Imag(G,(\ + ie)).

z—t e—04

The Stieltjes Transform and moment generating function are related by

M,(z) = zG,(z) — 1 = Y_;2; T, and the S Transform is defined as
S,(z) = N}ff( 7 The S Transform has the property that if p; and p; are
Z P z

freely independent then S,,,, = S,, S, .

https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2(Pennington et al. 18")

Moment generating functions

The S Transform of JJT with J = 2 = ML DO WO is then
given by

_ gL <L
Sy =858k,

my
zk

This can be computed through the moments M;r(z) = > 72,
Mp2(z) = 3232, 4, and Sy = 0,2 (1+ 3232, skz”) where

e = [(2m)7Y2¢ (\/ q(*)Z)zk e=?'/2dz.

In particular: my = (02,u1)" and 02 1 = x is the growth factor we
observed before, requiring x = 1 to avoid rapid convergence of
correlations to fixed points.
https://arxiv.org/pdf/1802.09979.pdf
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Random DNN recursion map (Poole et al. 16")

Norm of hidden layer output dependence on prior layer

Let ¢) = n,1||h)||2 be the average squared /5 length of the
pre-activation A — W0 Z(e=1) 4 p(€) 5t layer ¢, then with w®
and b\ being drawn from N(0, 02, /n;) and N'(0,02/ny)
respectively, we can express the evolution of the length as

g = op,n Y o(h D)3 + op.
Replacing the average squared Iength n=Y|| - ||3 for large n by the
squared integral we could instead consider the propagation

2
q¥) =2 /(27‘()1/2qﬁ ( q(g—l)z> e Z2dz + o3

https://arxiv.org/pdf/1606.05340.pdf
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Random DNN recursion map (Poole et al. 16")

Norm of hidden layer output dependence on prior layer

The average squared length g° = N71||h()||3 of the pre-activation
following the recursion

2
q¥) =02 /(271)1/2¢ ( q(f—l)z> e ?2dz + o2,

has a fixed point ¢* = o2, f(27r)_1/2gb (\/ q(*)z)2 e #/2dz + o2
whose stability governs the ability of the network to train. In fact,
the growth of a perturbation is given by the expected mean
singular value of JT J which is given by

2
=d [ (\/qmz) o724,

https://arxiv.org/pdf/1606.05340.pdf
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Stability of pre-activation lengths (Pennington et al. 18")
The “Edge of Chaos Curve” for ¢(-) = tanh(-).
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Figure 1: Order-chaos tramnsition when @é(h) =
tanh(/A). The critical line x = 1 determines the bound-
ary between the two phases. In the chaotic regime

x > 1 and gradients explode while in the ordered
regime x < 1 and we expect gradients to vanish. The
value of g* along this line is shown as a heatmap.

https://arxiv.org/pdf/1802.09979.pdf
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Network variance control through depth (Abrol 19")

Edge of chaos curves for other nonlinear activations Mathematical
Institute

The pre-activation output of networks converge to a zero-mean
Gaussian distribution with variance, g*, specified by the nonlinear
activation, weight and bias variance, o, and o} respective.

The distribution of the network input-output spectrum has a mean
at layer d given by 9. Level curves of Y = 1 overcome the
exponential dependence on depth and allow training.

qg* at critical line

Phase diagram

—— tanh
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Initialisation on this curve allows training very deep networks.
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Nonlinear activation stability (Pennington et al. 18’)

Examples of moment generating functions Mathematical
Institute

Table 1: Properties of Nonlinearities
| o(h) | Mp2(2) | ok | o2, | o2 ,r

Linear h = 1 1 L(—s1)

ReLu [h] 4 14 i 2 L(1—sy)

Hard Tanh | [+ 15 — (b — 1) — 1 | erf(obe) =Ly of( A7) | arirs | Plartos — 1)
Erf erf (5 h) s (1 i, 4‘:;;-) T | VIFRE | LR — 1= s1)

oo i
Where Mpa(z) = > ;2 B with

pk = [(2m)"Y2¢ (\/qi*z) e=?°/2dz. For W Gaussian s; = —1
where as for W orthogonal 51 = 0. Note that for all nonlinear
activations for u102 =1, 02,; grows linearly with L.

Linear ¢(): ¢* = a q +O’é, and fixed point (o, 0p) = (1,0).
ReLU ¢(-): q* = 302q" + 02, and fixed point (ow,05) = (v/2,0).
Hard Tanh and Erf have curves as fixed points x(ow, 0p).
https://arxiv.org/pdf/1802.09979.pdf
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Distribution of activations ¢'(z) (Pennington et al. 18") -

g = [(2m)" 1/24 (\/ q(*)z) e ? /de Mathematical

Institute
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Figure 3: Distribution of ¢’(h) for different nonlinearities. The top row shows the nonlinearity, ¢(h), along with
the Gaussian distribution of pre-activations h for four different choices of the variance, ¢*. The bottom row gives
the induced distribution of ¢/(h). We see that for ReLU the d bution is independent of ¢*. This implies that
there is no stable limiting distribution for the spectrum of JJ By contrast for the other nonlinearities the
distribution is a relatively strong function of ¢*.

https://arxiv.org/pdf/1802.09979.pdf

Oxford Random DNN Jacobian: effects of depth on the gradient
Mathematics


https://arxiv.org/pdf/1802.09979.pdf

Distribution of Jacobian spectra (Pennington et al. 18")

Observed universality of spectra based on ¢(+)
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Figure 4: Two limiting universality classes of Jacobian spectra. Hard Tanh and Shifted ReLU fall into one class,
characterized by Bernoulli-distributed ¢’ (h)?, while Erf and Smoothed ReLU fall into a second class, characterized
by a smooth distribution for ¢(h)?. The black curves are theoretical predictions for the limiting distributions
with variance o = 1/4. The colored lines are emprical spectra of finite-depth width-1000 orthogonal neural
networks. The empirical spectra converge to the limiting distributions in all cases. The rate of convergence is
similar for Hard-Tanh and Shifted ReLU, whereas it is significantly different for Erf and Smoothed Relu, which
converge to the same limiting distribution along distinct trajectories. In all cases, the solid colored lines go from
shallow L = 2 networks (red) to deep networks (purple). In all cases but Erf the deepest networks have L = 128.
For Erf, the dashed lines show solutions to for very large depth up to L = 8192.

https://arxiv.org/pdf/1802.09979.pdf
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Summary of random DNN initialisation

Dependence between oy, op, ¢()

>

Poole et al. 16" showed pre-activation output is well modelled
as Gaussian with variance g* determined by o, op, &().
Moreover, the correlation between two inputs follows a similar
map with correlations converging to a fixed point, with the
behaviour determined in part by x where y = 1 avoids
correlation to the same point, or nearby points diverging.
https://arxiv.org/pdf/1606.05340.pdf

Pennington et al 18" showed more generally how to compute
the moments for the Jacobian spectra, where xy = 1 is needed
to avoid exponential growth or shrinkage with depth of
gradients.

https://arxiv.org/pdf/1802.09979.pdf
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