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Random DNNs hidden layer outputs
Exponential geometric complexity

Random DNNs can generate exponentially complex geometric objects:

(Raghu et al. 16’) and (Poole et al. 16’)

https://arxiv.org/abs/1606.05336.pdf

https://arxiv.org/pdf/1606.05340.pdf

respectively derive lower bounds on length and curvature of simple line

inputs. These lower bounds are exponential in depth.

Theorem (Price et al. 19’)

Let fNN(x ;P,Q) be a random net with E [|uTwi |] ≥ M‖u‖, for wi

is the i th row of W ∈ P, and u and M are constants, then

E [l(z(L)(t))] ≥
(
M

2

)L

· l(x(t))

for x(t) a 1-dimensional trajectory in input space.
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Random DNNs hidden layer outputs
Norm of hidden layer outputs

Let fNN(x) denote a random Gaussian DNN

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

which takes as input the vector x , and is parameterised by random
weight matrices W (`) and bias vectors b(`) with entries sampled iid
from the Gaussian normal distributions N (0, σ2

w ) and N (0, σ2
b).

Define the `2 length of the pre-activation hidden layer h(`) ∈ Rn`

output as:

q` = n−1
`

∥∥∥h(`)
∥∥∥2

`2
:=

1

n`

∑̀
i=1

(
h(`)(i)

)2
.

which is the average value of the random entries
(
h(`)(i)

)2
.

Hidden layer outputs for random DNNs. 3



Random DNN recursion map (Poole et al. 16’)
Norm of hidden layer output dependence on prior layer

The norm of the hidden layer output q` = n−1
`

∥∥h(`)
∥∥2

`2 has an expected

value over the random draws of W (`) and b(`) which satisfies

E(q`) = E
((

h(`)(i)
)2
)

which as h(`) = W (`)φ(h(`−1)) + b(`) is

E(q`) = E
((

w
(`)
i φ

(
h(`−1)

))2
)

+ E
((

b
(`)
i

)2
)

= σ2
wn
−1
`−1

n`−1∑
i=1

φ
(
h

(`−1)
i

)2
+ σ2

b.

https://arxiv.org/pdf/1606.05340.pdf
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Random DNN recursion map (Poole et al. 16’)
Mean field recursion between layers

Approximating h
(`−1)
i as Gaussian with expected variance q(`−1):

n−1
`−1

n`−1∑
i=1

φ
(
h

(`−1)
i

)2

= E
(
φ
(
q(`−1)

)2
)

=
1√
2π

∫ ∞
−∞

φ
(√

q(`−1)z
)2

e−z
2/2dz

which gives a recursive map of q` = n−1
`

∥∥h(`)
∥∥2

`2 between layers

q(`) = σ2
b+σ2

w

1√
2π

∫ ∞
−∞

φ
(√

q(`−1)z
)2

e−z
2/2dz =: V(q(`−1)|σw , σb, φ(·)).

Note that the integral is larger for φ(x) = |x | than ReLU, which
are larger than φ(x) = tanh(x), indicating smaller σw , σb needed.
https://arxiv.org/pdf/1606.05340.pdf
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Example of DNN recursion fixed points (Poole et al. 16’)
Dependence on σw , σb, φ(·) for φ(·) = tanh(·).

Note that the fixed points here are all stable.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16’)
Map of angle between two inputs

A single input x has hidden pre-activation output converging to a
fixed expected length.
Consider the map governing the angle between the hidden layer
pre-activations of two distinct inputs x (0,a) and x (0,b):

q
(`)
ab = n−1

`

nl∑
i=1

h
(`)
i (x (0,a))h

(`)
i (x (0,b)).

Similar to the analysis before, use the relation
h(`) = W (`)φ(h(`−1)) + b(`) to show the relation between layers.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16’)
Expected angle between

Replacing the average in the sum with the expected value gives

q
(`)
ab = n−1

`

nl∑
i=1

h
(`)
i (x (0,a))h

(`)
i (x (0,b))

= σ2
b + σ2

wE
(
φ(h(`−1)(x (0,a)))φ(h(`−1)(x (0,b)))

)
where as before, h

(`−1)
i are well modelled as being Gaussian with

expected length q(`−1) which converge to fixed points q∗.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16’)
Recursion correlation map.

Defining the angle between the hidden layers as c(`) = q
(`)
12 /q

(∗)

and writing the expectation as integrals we have

c(`) = C
(
c(`−1)|σw , σb, φ(·)

)
:= σ2

b + σ2
w

∫
Dz1Dz2φ(u1)φ(u2)

where the double integral is with respect to the measure
Dz = (2π)−1/2e−z

2/2dz where u1 =
√
q∗z1 and

u2 =
√
q∗[c(`−1)z1 +

√
1− (c(`−1))2z2] are a change of variables

for the integrals.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16’)
Recursion correlation map fixed points

The map has a fixed point at c = 1. For σ2
b > 0 the map starts at

a positive value, even if x (0,a) and x (0,b) are orthogonal.
Of particular note is the slope of C at c = 1

χ :=
∂c(`)

∂c(`−1)
|c=1 = σ2

w

∫
Dz [φ′(

√
q∗z)2].

Stability of the fixed point at c = 1 is determined by χ:

I χ < 1: c = 1is locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

I χ > 1: c = 1 is unstable and nearby points become
uncorrelated with depth.

I Preferable to choose χ = 1 if possible for σw , σb, φ(·).

https://arxiv.org/pdf/1606.05340.pdf
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Example of DNN correlation fixed points (Poole et al. 16’)
Dependence on σw , σb, φ(·) for φ(·) = tanh(·).

Note three respective stable fixed points, determined in part by χ.
https://arxiv.org/pdf/1606.05340.pdf
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DNN random initialisation summary
Dependence on σw , σb, φ(·).

I The hidden layers converge to fixed expected length.

I All inputs converge to either one another or to be orthogonal,
independent of the class the data is in, typically happening at
a rate which is exponential with depth.

I The rate with which these phenomenon occur, and values
which they take, are determined by the choice of σw , σb, φ(·).

I Very DNNs can be especially hard to train for activations with
unfavourable initialisations; e.g. ReLU with χ = 1 requires
(σw , σb) = (

√
2, 0).

Hidden layer outputs for random DNNs. 12


