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Random DNNs hidden layer outputs

Exponential geometric complexity

Random DNNs can generate exponentially complex geometric objects:
(Raghu et al. 16) and (Poole et al. 16")
https://arxiv.org/abs/1606.05336.pdf
https://arxiv.org/pdf/1606.05340.pdf

respectively derive lower bounds on length and curvature of simple line
inputs. These lower bounds are exponential in depth.

Let fyn(x; P, Q) be a random net with E[|u” w;|] > M|ul|, for w;
is the i*" row of W € P, and u and M are constants, then

L
> () - 1x(0)

for x(t) a 1-dimensional trajectory in input space.
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Random DNNs hidden layer outputs

Norm of hidden layer outputs

Let fun(x) denote a random Gaussian DNN

O = w00 4 pO D) — gy, r=o0,...,L—1,

which takes as input the vector x, and is parameterised by random
weight matrices W) and bias vectors b(*) with entries sampled iid
from the Gaussian normal distributions N(0,02) and A/(0, 7).
Define the £2 length of the pre-activation hidden layer h() € R™
output as:

; — ;ZZ: (h(@(i))z.

i=1

¢ = n;l Hh(e)

which is the average value of the random entries (h(e)(i))z.
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Random DNN recursion map (Poole et al. 16")

Norm of hidden layer output dependence on prior layer

Mathematical
Institute

The norm of the hidden layer output ¢ = n, ! Hh(e)Hj2 has an expected
value over the random draws of W and b(©) which satisfies

(e = ((w)°)

which as h() = WO H(AE=1)) 4 p(®) is

£ty =& (2% (49))") e ((5))

= af,,n[_ll Z 0] (h,@_l))z + af,.
i=1

https://arxiv.org/pdf/1606.05340.pdf
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Random DNN recursion map (Poole et al. 16")

Mean field recursion between layers

) (¢-1).

Approximating hl(z_l as Gaussian with expected variance g

Ne—1

i oo (W) e (o (o)) = [ o (VAT e

. . . _ 2
which gives a recursive map of g‘ = n, 1 Hh(ﬁ)HZ2 between layers

oo

1 2 2
O = 62402 —— Dz} e 7/2dz = V(g Viow, ob, 4(-)).
0 =otrol = | o(Va"z) (4" Vlow. o6 0())

Note that the integral is larger for ¢(x) = |x| than ReLU, which
are larger than ¢(x) = tanh(x), indicating smaller o, o, needed.
https://arxiv.org/pdf/1606.05340.pdf
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Example of DNN recursion fixed points (Poole et al. 16")

Dependence on oy, , o, ¢(-) for ¢(-) = tanh(-).
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Figure 1: Dynamics of the squared length ¢ for a sigmoidal network (¢(h) = tanh(h)) with 1000
hidden units. (A) The iterative length map in for 3 different o, at o, = 0.3. Theoretical
predictions (solid lines) match well with individual network simulations (dots). Stars reflect fixed
points ¢* of the map. (B) The iterative dynamics of the length map yields rapid convergence of ¢!
to its fixed point ¢* , independent of initial condition (lines=theory; dots=simulation). (C) ¢* as a
function of 7, and 3, (D) Number of iterations required to achieve < 1% fractional deviation off
the fixed point. The (a4, 0,) pairs in (A,B) are marked with color matched circles in (C,D).

Note that the fixed points here are all stable.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16')

Map of angle between two inputs

A single input x has hidden pre-activation output converging to a
fixed expected length.

Consider the map governing the angle between the hidden layer
pre-activations of two distinct inputs x(%:2) and x(0:0):

qab*”elzh Z(X(Ob)

Similar to the analysis before, use the relation
A = WO (A1) + b to show the relation between layers.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16')

Expected angle between

Replacing the average in the sum with the expected value gives
-1 0, (0, £)(,(0,b
qab =n, Zh( ?) h( )( ( ))

e CURICED IR EE))

where as before, A are well modelled as being Gaussian with
expected length g 1) which converge to fixed points g*.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16')

Recursion correlation map.

Defining the angle between the hidden layers as ¢(¥) = q:(é)/q(*)
and writing the expectation as integrals we have

c® = (Do, 05,6()) = oh+ 0% / Dz, Dzy¢(un)¢(u2)

where the double integral is with respect to the measure

Dz = (27)"Y/2e=%*/2dz where u; = \/q*z and

tp = /g [c Nz + /1 — (c(¢=1))22] are a change of variables
for the integrals.

https://arxiv.org/pdf/1606.05340.pdf

Oxford Hidden layer outputs for random DNNs.
Mathematics


https://arxiv.org/pdf/1606.05340.pdf

Random DNN correlations between inputs (Poole et al. 16')

Recursion correlation map fixed points

a positive value, even if x(%2) and x(%) are orthogonal.
Of particular note is the slope of C at c =1

— ) — o2 | Dzl )2
X = W‘c:l—aw z[¢'(v/q*2)°].
Stability of the fixed point at ¢ = 1 is determined by :

» x < 1: ¢ = 1lis locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

» x > 1: ¢ =1 is unstable and nearby points become
uncorrelated with depth.

» Preferable to choose x = 1 if possible for o, op, ¢(+).
https://arxiv.org/pdf/1606.05340.pdf
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Example of DNN correlation fixed points (Poole et al. 16")

Dependence on oy, , o, ¢(-) for ¢(-) = tanh(-).
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Figure 2: Dynamics of correlations, ¢}y, in a sigmoidal network with ¢(h) = tanh(h). (A) The
C-map in (6) for the same o, and o, = 0.3 as in Fig. [TA. (B) The C-map dynamics, derived from
both theory, through @ (solid lines) and numerical simulations of (1) with N; = 1000 (dots) (C)
Fixed points ¢* of the C-map. (D) The slope of the C-map at 1, y1, partitions the space (black dotted
line at x; = 1) into chaotic (y; > 1, ¢* < 1) and ordered (y; < 1, ¢* = 1) regions.

Note three respective stable fixed points, determined in part by x.
https://arxiv.org/pdf/1606.05340.pdf
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DNN random initialisation summary

Dependence on oy, op, ¢(+).

The hidden layers converge to fixed expected length.

All inputs converge to either one another or to be orthogonal,
independent of the class the data is in, typically happening at
a rate which is exponential with depth.

The rate with which these phenomenon occur, and values
which they take, are determined by the choice of o, op, &(-).

Very DNNs can be especially hard to train for activations with
unfavourable initialisations; e.g. ReLU with y = 1 requires

(0w, 05) = (v2,0).
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