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Two geometric notions of exponential expressivity
Partitions of the domain and path length

Prior to the approximation rate results from Telgarsky 15’ and
Yarotsky 16’, there were qualitative geometric results showing
showing potential for exponential expressivity:

I On the number of response regions of deep feedforward
networks with piecewise linear activations (Pascanu et al. 14’)
https://arxiv.org/pdf/1312.6098.pdf

I On the expressive power of deep neural networks (Raghu et al.
16’)
https://arxiv.org/abs/1606.05336

I Trajectory growth lower bounds for random sparse deep ReLU
networks (Price et al. 19’)
https://arxiv.org/abs/1911.10651
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ReLU hyperplane arrangement
Partition of the input domain Rn0 : one layer

The action of ReLU to an affine transform is a linearly increasing
function orthogonal to hyperplanes; let W ∈ Rn1×n0 then:

Hi := {x ∈ Rn0 : Wix + bi = 0} ∀i ∈ [n1]

where Wi is the i th row of W .
The normals to these hyperplanes partition the input dimension n0,
and if W is in general position (all subsets of rows are maximal
rank), then the number of partitions is:

n0∑
j=0

(
n1

j

)
https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement
Partition of the input domain Rn0 : with depth

The number of partitions in one layer is lower bounded by

n0∑
j=0

(
n1

j

)
≥ n

min{n0,n1/2}
1

and each hidden layers can further subdivide these regions:

Theorem (Pascanu et al. 14’)

An L layer DNN with ReLU activation, input Rn0 , and hidden layers
of width n1, n2, . . . , nL partitions the input space into at least

ΠL
`=0n

min{n0,n`/2}
`

This shows an exponential dependence on depth L.
https://arxiv.org/pdf/1312.6098.pdf

Geometric measures of expresivity. 4

https://arxiv.org/pdf/1312.6098.pdf


ReLU hyperplane arrangement
Partition of the input domain Rn0 : plot Pascanu et al. 14’

https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement
Partition of the input domain Rn0 : plot Raghu et al. 16’

https://arxiv.org/abs/1606.05336

This “activation region” perspective is a useful intuition for ReLU,
but lacks the quantitative convergence rates we observed in more
recent approximation theory results of Yarotsky 16’.
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Random initialisations and DNNs
DNNs are typically first trained from random values

A random network fNN(x ;P,Q) denotes a deep neural network:

h(d) = W (d)z(d) +b(d), z(d+1) = φ(hd)), d = 0, . . . , L−1,

which takes as input the vector x , and is parameterised by random
weight matrices W (d) with entries sampled iid from the distribution
P, and bias vectors b(d) with entries drawn iid from distribution Q.

While our goal is always to train a network, DNNs typically start as
random networks which influence their ability to be trained.

Popular choices are Gaussian, P = N (0, σ2
w ), or uniform,

P = U(−Cw ,Cw ) initialisations.
(*Note, for random networks we use φ(·) as the nonlinear activation and

σ to denote variance.)
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Trajectory length of random DNNs
A geometric notion of expressivity

Raghu et al. 16’ introduced the notion of trajectory length

l(x(t)) =

∫
t

∣∣∣∣∣∣∣∣dx(t)

dt

∣∣∣∣∣∣∣∣dt.
as a measure of expressivity of a DNN. In particular, they
considered passing a simple geometric object x(t), such as a line
x(t) = tx0 + (1− t)x1 for x0, x1 ∈ Rk and measure the expected
length of the output of the random DNN at layer d :

E
[
`(z(d))

]
`(x(t))

https://arxiv.org/abs/1606.05336
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Example of circle passed through a random DNN
Complexity of output increasing with depth

A circle passed through a random DNN and the pre-activation
output h(d) at layers d = 6 and 12.

DNNs can be used to generative data, GANs, and there one might
consider the complexity of the manifold the GAN can generate as a
measure of expressivity.
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Random DNN: expected path length lower bound
Path length bound dependence on σw .

Consider random DNNs of width n and depth L with weights and
bias are drawn i.i.d. W (`)(i , j) ∼ N (0, σ2

w/n), b(`)(j) ∼ N (0, σ2
b)

Theorem (Raghu et al. 16’)

Consider as input a one dimensional trajectory x(t) with arc-length

`(x(t)) =
∫
t

∥∥∥dx(t)
dt

∥∥∥ dt and let z(L)(t) be the output of the Gaussian

random feedforward network with ReLu activations, then

E
[
`(z(L))

]
`(x(t))

≥ O

( σw

(σ2
w + σ2

b)1/4
· n1/2

(n + (σ2
w + σ2

b)1/2)1/2

)L
 .

https://arxiv.org/abs/1606.05336
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Exponential growth of path length with depth.
Empirical experiments for htanh activation

https://arxiv.org/pdf/1611.08083.pdf
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Random DNN: expected path length lower bound
Generalised and simplified lower bound

Theorem (Price et al. 19’)

Let fNN(x ;α,P,Q) be a random sparse net with layers of width n.
Then, if E[|uTwi |] ≥ M‖u‖, where wi is the i th row of W ∈ P, and
u and M are constants, then

E[l(z(L)(t))] ≥
(
M

2

)L

· l(x(t))

for x(t) a 1-dimensional trajectory in input space.

Exponential growth with depth for random initialisations such as
Gaussian, uniform, and discrete; e.g. for Gaussian M = σw

√
2/π.

https://arxiv.org/abs/1911.10651
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Observed growth rate (solid) and bounds (dashed)
Empirical experiments showing dependence on σw and sparsity α

Price et al. 19’ also extended the results to have all but α fraction
of the entries in W equal to 0.

Unless σw or α small enough at initialisation the pre-activiation
output is exponentially complex.
https://arxiv.org/abs/1911.10651
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