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DNNs as function approximators

Functions act as classifiers and other machine learning tasks

Insti

Classification of inputs x € R" to c classes denoted by {e;}¢_;, is
modelled by a function H(x) for which H(x) = e; for all x in class
i where €;(¢) =1 for i = ¢ and 0 otherwise.

» Network architectures are able to approximate any function
(Cybenko (89') and Hornik (90')).

» The compositional nature of DNNs result in an exponential
expressivity only obtained by exponentially wide shallow NNs.

> Telgarsky 15" give a precise example of the aforementioned for
ReLU activation

» Yarotsky 16" develop local exponential approximation bounds
using polynomial approximation and O(log(1/¢)) depth.
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Representational benefits of depth (Telgarsky 15')

Composition gives exponential growth in complexity

Insti

For o(x) = max(x, 0) let f(x) = h3(x) = 0(20(x) — 4o(x — 1/2))
and iterate this 2-layer network k times to obtain a 2k-layer
network fX(x) = f(f(---(f(x)---)) with the property that it is
piecewise linear with change in slope at x; = i2=¥ for
i=0,1,...,2% and moreover takes on the values f(x;) = 0 for i
even and fX(x;) =1 for i odd.
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Representational benefits of depth (Yarotsky 16")

RelLU nets can approximate Sobolev spaces

The Sobolev norm is similar to that of functions with m — 1
derivatives that are Lipschitz continuous C™~1([0, 1]) excluding
sets of measure zero.

1]l wge (10, 1]%) = max|j<messsuppyepo 1j¢| D (x)].
Define the unit ball of functions in W3°([0,1]9) as

Fna = { £ € WX(0.11%) : lfllwze (0.1)) < 1}

For any d, m and € € (0,1), there is a ReLU network with depth
at most c(1 +In(1/€)) and at most ce~9/™(1 + log(1/¢)) weights
(width O(e=9/™)), for c a function of d, m, that can approximate
any function from Fy n, within absolute error €.
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Curse of dimensionality (Yarotsky 16")

Exponential in d/m growth in number of weights.

Yarotsky 16’ results show exponential approximation in depth, but
the overall number of weights is O(e=9/™). Recall

11l (10, 1]7) = max gj<messsupp,cfo,1j¢| D°F (x)|

For any d,m and € € (0,1), there is a ReLU network with depth
at most c(1 + In(1/€)) and at most ce~?/™(1 + log(1/e)) weights
(width O(e=9/™)), for ¢ a function of d, m, that can approximate
any function from Fy ,, within absolute error e.

https://arxiv.org/pdf/1610.01145.pdf
To avoid curse of dimensionality need m ~ d or more structure in
the function F to be approximated; e.g. compositional structure.
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Compositional structured functions (Poggio et al. 17")

Extending the compositional nature of Yarotsky dimensionally

Mathematical
Institute

Consider functions with a binary tree hierarchical structure:

where x € R® and

f(x) = h3(ho1(h11(x1, x2), h12(x3, xa)), hoa(h13(xs, X6), h1a(x7, xg)))
Let W2 be the class of all compositional functions £(-) of n
variables with binary tree structure and constituent functions h(+)
of 2 variables with m bounded derivatives.
https://arxiv.org/pdf/1611.00740.pdf
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https://arxiv.org/pdf/1611.00740.pdf

Compositional structured functions (Poggio et al. 17")

Each constituent function is a map from R2 5 R

Institute

The set Win? of of all compositional functions f(+) of n variables
with binary tree structure and constituent functions h(-) of 2
variables with m bounded derivatives can be effectively
approximated using a DNN with a rate dictated by the ability to
approximate functions R? — R; e.g. effectively locally d = 2.

Let £(-) € Wm? and consider a DNN with the same binary com-
positional tree structure and an activation o(-) which is infinitely
differentiable, and not a polynomial. The function 7(-), can be ap-
proximated by e with a number of weights that is O ((n — 1)6_2/’").

https://arxiv.org/pdf/1611.00740.pdf
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https://arxiv.org/pdf/1611.00740.pdf

Compositional structured functions (Poggio et al. 17")

Compositional functions W,’,',’2 compared to shallow NNs and Yarotsky(16")

Insti

The set Wim? of of all compositional functions f(-) of n variables
with binary tree structure are effectively d = 2 in the DNN
approximation requirements, but are much richer than d = 2.

Functions can be approximated within ¢ with a DNN from
O(In(1/€)) layers with a number of weights:
> O(e=9/™) for general locally smooth functions (Yarotsky 16'),
> O ((n—1)e ™) for f(-) € Wiy, binary tree structure and
constituent functions in Cp,[0, 1]°.
> O(e=9/™) for shallow NNs is best possible for f(-) € W”
which have non-binary hierarchical tree structures.
https://arxiv.org/pdf/1611.00740.pdf
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https://arxiv.org/pdf/1611.00740.pdf

Definition of local effective dimensionality (Poggio et al. 17")

Local dimensionality determined by approximation rate e 9.

The effective dimensionality of a function class W is said to be d if

for every € > 0, any function within W can be approximated within

an accuracy € by a DNN at rate e 9.

In the prior slide we had examples of complex compositional
functions with effective dimensionality 2. These could be extended
naturally to local effective dimensionality d.g and local smoothness
Mefr for rate e e/ Mmefr

Restriction to a data class decreases d.g and localisation can
increase the smoothness megs substantially.
https://arxiv.org/pdf/1611.00740.pdf
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https://arxiv.org/pdf/1611.00740.pdf

Intrinsic dimensionality of sub-manifolds (Hein et al. 05')

MNIST exemplar dataset classes are approximately under 15 dimensional

Mathematical
Institute

Estimates of dimensionality within MNIST digit classes using three
approaches: the reference below, and two others building on local
linear embedding.

Table 7. Number of samples and estimated intrinsic di-
mensionality of the digits in MNIST.

1 2 3 4 5
7877 6990 7141 6824 6903
8/7/7 |13/12/13|14/13/13|13/12/12|12/12/12

6 7 8 9 0
6876 7293 6825 6958 6903
11/11/11|10/10/10 |14/13/13 |12/11/11 |12/11/11

https://icml.cc/Conferences/2005/proceedings/papers/037_
Intrinsic_HeinAudibert.pdf
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The hidden manifold model (Goldt et al. 19')

An alternative manifold model: one layer GAN

A manifold model can explicitly represent the data through:
X = f(CF/Vd) e RP"

where:
» F € RY" are the d features used to represent the data
» C € RP9 combines the d < n < p features

» f(-) is an entrywise locally smooth nonlinear function.

This data model is the same as a generative adversarial network
(GAN) and is similar to dictionary learning and subspace clustering
models where C is typically sparse.
https://hal-cea.archives-ouvertes.fr/cea-02529246/document
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Additional approximation theory resources

Review articles and courses elsewhere

Mathematical
Institute

Further references for the approximation theory perspective of deep
learning include:

» Telgarsky's “Deep Learning Theory” course, lectures 1-11:
http://mjt.cs.illinois.edu/courses/dlt-£20/

» Matthew Hirn's “Mathematics of Deep Learning” course:
lectures 20-24.
https:
//matthewhirn.com/teaching/spring-2020-cmse-890-002/
» DNN Approximation Theory by Elbrachter et al. (19)
https:
//www.mins.ee.ethz.ch/pubs/files/deep-it-2019.pdf
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