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DNNs as function approximators
Functions act as classifiers and other machine learning tasks

Classification of inputs x ∈ Rn to c classes denoted by {ei}c
i=1, is

modelled by a function H(x) for which H(x) = ei for all x in class
i where ei (`) = 1 for i = ` and 0 otherwise.

I Network architectures are able to approximate any function
(Cybenko (89’) and Hornik (90’)).

I The compositional nature of DNNs result in an exponential
expressivity only obtained by exponentially wide shallow NNs.

I Telgarsky 15’ give a precise example of the aforementioned for
ReLU activation

I Yarotsky 16’ develop local exponential approximation bounds
using polynomial approximation and O(log(1/ε)) depth.
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Representational benefits of depth (Telgarsky 15’)
Composition gives exponential growth in complexity

For σ(x) = max(x , 0) let f (x) = h3(x) = σ(2σ(x)− 4σ(x − 1/2))
and iterate this 2-layer network k times to obtain a 2k-layer
network f k (x) = f (f (· · · (f (x) · · · )) with the property that it is
piecewise linear with change in slope at xi = i2−k for
i = 0, 1, . . . , 2k and moreover takes on the values f k (xi ) = 0 for i
even and f k (xi ) = 1 for i odd.
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Representational benefits of depth (Yarotsky 16’)
ReLU nets can approximate Sobolev spaces

The Sobolev norm is similar to that of functions with m − 1
derivatives that are Lipschitz continuous Cm−1([0, 1]d ) excluding
sets of measure zero.

‖f ‖W ∞
m

([0, 1]d ) = max|s|≤messsuppx∈[0,1]d |Ds f (x)|.
Define the unit ball of functions in W∞

m ([0, 1]d ) as

Fm,d =
{
f ∈W∞

m ([0, 1]d ) : ‖f ‖W ∞
m

([0, 1]d ) ≤ 1
}
.

Theorem (Yarotsky 16’)

For any d ,m and ε ∈ (0, 1), there is a ReLU network with depth
at most c(1 + ln(1/ε)) and at most cε−d/m(1 + log(1/ε)) weights
(width O(ε−d/m)), for c a function of d ,m, that can approximate
any function from Fd ,m within absolute error ε.
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Curse of dimensionality (Yarotsky 16’)
Exponential in d/m growth in number of weights.

Yarotsky 16’ results show exponential approximation in depth, but
the overall number of weights is O(ε−d/m). Recall

‖f ‖W ∞
m

([0, 1]d ) = max|s|≤messsuppx∈[0,1]d |Ds f (x)|.

Theorem (Yarotsky 16’)

For any d ,m and ε ∈ (0, 1), there is a ReLU network with depth
at most c(1 + ln(1/ε)) and at most cε−d/m(1 + log(1/ε)) weights
(width O(ε−d/m)), for c a function of d ,m, that can approximate
any function from Fd ,m within absolute error ε.

https://arxiv.org/pdf/1610.01145.pdf

To avoid curse of dimensionality need m ∼ d or more structure in
the function F to be approximated; e.g. compositional structure.
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Compositional structured functions (Poggio et al. 17’)
Extending the compositional nature of Yarotsky dimensionally

Consider functions with a binary tree hierarchical structure:

where x ∈ R8 and
f (x) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8)))
Let W n,2

m be the class of all compositional functions f (·) of n
variables with binary tree structure and constituent functions h(·)
of 2 variables with m bounded derivatives.
https://arxiv.org/pdf/1611.00740.pdf
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Compositional structured functions (Poggio et al. 17’)
Each constituent function is a map from R2 → R

The set W n,2
m of of all compositional functions f (·) of n variables

with binary tree structure and constituent functions h(·) of 2
variables with m bounded derivatives can be effectively
approximated using a DNN with a rate dictated by the ability to
approximate functions R2 → R; e.g. effectively locally d = 2.

Theorem (Poggio 17’)

Let f (·) ∈ W n,2
m and consider a DNN with the same binary com-

positional tree structure and an activation σ(·) which is infinitely
differentiable, and not a polynomial. The function f (·), can be ap-
proximated by ε with a number of weights that is O

(
(n − 1)ε−2/m

)
.

https://arxiv.org/pdf/1611.00740.pdf
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Compositional structured functions (Poggio et al. 17’)
Compositional functions W n,2

m compared to shallow NNs and Yarotsky(16’)

The set W n,2
m of of all compositional functions f (·) of n variables

with binary tree structure are effectively d = 2 in the DNN
approximation requirements, but are much richer than d = 2.

Functions can be approximated within ε with a DNN from
O(ln(1/ε)) layers with a number of weights:

I O(ε−d/m) for general locally smooth functions (Yarotsky 16’),

I O
(
(n − 1)ε−2/m

)
for f (·) ∈W n,2

m , binary tree structure and
constituent functions in Cm[0, 1]2.

I O(ε−d/m) for shallow NNs is best possible for f (·) ∈W n
m

which have non-binary hierarchical tree structures.

https://arxiv.org/pdf/1611.00740.pdf
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Definition of local effective dimensionality (Poggio et al. 17’)
Local dimensionality determined by approximation rate ε−d .

Definition (Poggio 17’)

The effective dimensionality of a function class W is said to be d if
for every ε > 0, any function within W can be approximated within
an accuracy ε by a DNN at rate ε−d .

In the prior slide we had examples of complex compositional
functions with effective dimensionality 2. These could be extended
naturally to local effective dimensionality deff and local smoothness
meff for rate ε−deff /meff .

Restriction to a data class decreases deff and localisation can
increase the smoothness meff substantially.
https://arxiv.org/pdf/1611.00740.pdf
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Intrinsic dimensionality of sub-manifolds (Hein et al. 05’)
MNIST exemplar dataset classes are approximately under 15 dimensional

Estimates of dimensionality within MNIST digit classes using three
approaches: the reference below, and two others building on local
linear embedding.

https://icml.cc/Conferences/2005/proceedings/papers/037_

Intrinsic_HeinAudibert.pdf
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The hidden manifold model (Goldt et al. 19’)
An alternative manifold model: one layer GAN

A manifold model can explicitly represent the data through:

X = f (CF/
√
d) ∈ Rp,n

where:

I F ∈ Rd ,n are the d features used to represent the data

I C ∈ Rp,d combines the d < n < p features

I f (·) is an entrywise locally smooth nonlinear function.

This data model is the same as a generative adversarial network
(GAN) and is similar to dictionary learning and subspace clustering
models where C is typically sparse.
https://hal-cea.archives-ouvertes.fr/cea-02529246/document
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Additional approximation theory resources
Review articles and courses elsewhere

Further references for the approximation theory perspective of deep
learning include:

I Telgarsky’s “Deep Learning Theory” course, lectures 1-11:
http://mjt.cs.illinois.edu/courses/dlt-f20/

I Matthew Hirn’s “Mathematics of Deep Learning” course:
lectures 20-24.
https:

//matthewhirn.com/teaching/spring-2020-cmse-890-002/

I DNN Approximation Theory by Elbrachter et al. (19’)
https:

//www.mins.ee.ethz.ch/pubs/files/deep-it-2019.pdf

The role of dimensionality: DNNs and data model. 12

http://mjt.cs.illinois.edu/courses/dlt-f20/
https://matthewhirn.com/teaching/spring-2020-cmse-890-002/
https://matthewhirn.com/teaching/spring-2020-cmse-890-002/
https://www.mins.ee.ethz.ch/pubs/files/deep-it-2019.pdf
https://www.mins.ee.ethz.ch/pubs/files/deep-it-2019.pdf

