

Data classes for which DNNs can overcome the curse of dimensionality.

Theories of Deep Learning: C6.5, Video 4 Prof. Jared Tanner Mathematical Institute University of Oxford

DNNs as function approximators

Functions act as classifiers and other machine learning tasks

Classification of inputs $x \in \mathbb{R}^n$ to c classes denoted by $\{e_i\}_{i=1}^c$, is modelled by a function H(x) for which $H(x) = e_i$ for all x in class i where $e_i(\ell) = 1$ for $i = \ell$ and 0 otherwise.

- ▶ Network architectures are able to approximate any function (Cybenko (89') and Hornik (90')).
- The compositional nature of DNNs result in an exponential expressivity only obtained by exponentially wide shallow NNs.
- Telgarsky 15' give a precise example of the aforementioned for ReLU activation
- Yarotsky 16' develop local exponential approximation bounds using polynomial approximation and $\mathcal{O}(\log(1/\epsilon))$ depth.

Representational benefits of depth (Telgarsky 15')

For $\sigma(x) = \max(x,0)$ let $f(x) = h_3(x) = \sigma(2\sigma(x) - 4\sigma(x-1/2))$ and iterate this 2-layer network k times to obtain a 2k-layer network $f^k(x) = f(f(\cdots(f(x)\cdots)))$ with the property that it is piecewise linear with change in slope at $x_i = i2^{-k}$ for $i = 0, 1, \ldots, 2^k$ and moreover takes on the values $f^k(x_i) = 0$ for i even and $f^k(x_i) = 1$ for i odd.

Representational benefits of depth (Yarotsky 16')

The Sobolev norm is similar to that of functions with m-1 derivatives that are Lipschitz continuous $C^{m-1}([0,1]^d)$ excluding sets of measure zero.

$$\|f\|_{W_m^\infty}([0,1]^d)=\mathsf{max}_{|s|\leq m}\mathsf{esssupp}_{x\in[0,1]^d}|D^sf(x)|.$$
 Define the unit ball of functions in $W_m^\infty([0,1]^d)$ as

$$F_{m,d} = \left\{ f \in W_m^{\infty}([0,1]^d) : \|f\|_{W_m^{\infty}}([0,1]^d) \leq 1 \right\}.$$

Theorem (Yarotsky $16^{\prime})$

For any d,m and $\epsilon \in (0,1)$, there is a ReLU network with depth at most $c(1+\ln(1/\epsilon))$ and at most $c\epsilon^{-d/m}(1+\log(1/\epsilon))$ weights (width $\mathcal{O}(\epsilon^{-d/m})$), for c a function of d,m, that can approximate any function from $F_{d,m}$ within absolute error ϵ .

Curse of dimensionality (Yarotsky 16')

Exponential in d/m growth in number of weights.

Yarotsky 16' results show exponential approximation in depth, but the overall number of weights is $\mathcal{O}(\epsilon^{-d/m})$. Recall

$$||f||_{W_m^{\infty}}([0,1]^d) = \max_{|s| \le m} \operatorname{esssupp}_{x \in [0,1]^d} |D^s f(x)|.$$

Theorem (Yarotsky 16')

For any d,m and $\epsilon \in (0,1)$, there is a ReLU network with depth at most $c(1+\ln(1/\epsilon))$ and at most $c\epsilon^{-d/m}(1+\log(1/\epsilon))$ weights (width $\mathcal{O}(\epsilon^{-d/m})$), for c a function of d,m, that can approximate any function from $F_{d,m}$ within absolute error ϵ .

https://arxiv.org/pdf/1610.01145.pdf

To avoid curse of dimensionality need $m \sim d$ or more structure in the function F to be approximated; e.g. compositional structure.

Compositional structured functions (Poggio et al. 17')

Consider functions with a binary tree hierarchical structure:

where $x \in \mathbb{R}^8$ and $f(x) = h_3(h_{21}(h_{11}(x_1, x_2), h_{12}(x_3, x_4)), h_{22}(h_{13}(x_5, x_6), h_{14}(x_7, x_8)))$ Let $W_m^{n,2}$ be the class of all compositional functions $f(\cdot)$ of n variables with binary tree structure and constituent functions $h(\cdot)$ of 2 variables with m bounded derivatives.

Compositional structured functions (Poggio et al. 17')

Each constituent function is a map from $\mathbb{R}^2 o \mathbb{R}$

The set $W_m^{n,2}$ of of all compositional functions $f(\cdot)$ of n variables with binary tree structure and constituent functions $h(\cdot)$ of 2 variables with m bounded derivatives can be effectively approximated using a DNN with a rate dictated by the ability to approximate functions $\mathbb{R}^2 \to \mathbb{R}$; e.g. effectively locally d=2.

Theorem (Poggio 17')

Let $f(\cdot) \in W_m^{n,2}$ and consider a DNN with the same binary compositional tree structure and an activation $\sigma(\cdot)$ which is infinitely differentiable, and not a polynomial. The function $f(\cdot)$, can be approximated by ϵ with a number of weights that is $\mathcal{O}\left((n-1)\epsilon^{-2/m}\right)$.

Compositional structured functions (Poggio et al. 17')

Compositional functions $W_m^{n,2}$ compared to shallow NNs and Yarotsky(16')

The set $W_m^{n,2}$ of of all compositional functions $f(\cdot)$ of n variables with binary tree structure are effectively d=2 in the DNN approximation requirements, but are much richer than d=2.

Functions can be approximated within ϵ with a DNN from $\mathcal{O}(\ln(1/\epsilon))$ layers with a number of weights:

- $ightharpoonup \mathcal{O}(\epsilon^{-d/m})$ for general locally smooth functions (Yarotsky 16'),
- ▶ $\mathcal{O}\left((n-1)\epsilon^{-2/m}\right)$ for $f(\cdot) \in W_m^{n,2}$, binary tree structure and constituent functions in $C_m[0,1]^2$.
- ▶ $\mathcal{O}(\epsilon^{-d/m})$ for shallow NNs is best possible for $f(\cdot) \in W_m^n$ which have non-binary hierarchical tree structures.

Definition of local effective dimensionality (Poggio et al. 17')

OXFORD Mathematical

Local dimensionality determined by approximation rate e^{-d} .

Definition (Poggio 17')

The effective dimensionality of a function class W is said to be d if for every $\epsilon > 0$, any function within W can be approximated within an accuracy ϵ by a DNN at rate ϵ^{-d} .

In the prior slide we had examples of complex compositional functions with effective dimensionality 2. These could be extended naturally to local effective dimensionality $d_{\rm eff}$ and local smoothness $m_{\rm eff}$ for rate $e^{-d_{\rm eff}/m_{\rm eff}}$.

Restriction to a data class decreases d_{eff} and localisation can increase the smoothness m_{eff} substantially.

Intrinsic dimensionality of sub-manifolds (Hein et al. 05')

MNIST exemplar dataset classes are approximately under 15 dimensional

Estimates of dimensionality within MNIST digit classes using three approaches: the reference below, and two others building on local linear embedding.

Table 7. Number of samples and estimated intrinsic dimensionality of the digits in MNIST.

1	2	3	4	5
7877	6990	7141	6824	6903
8/7/7	13/12/13	14/13/13	13/12/12	12/12/12
6	7	8	9	0
6876	7293	6825	6958	6903
11/11/11	10/10/10	14/13/13	12/11/11	12/11/11

https://icml.cc/Conferences/2005/proceedings/papers/037_ Intrinsic_HeinAudibert.pdf

The hidden manifold model (Goldt et al. 19')

An alternative manifold model: one layer GAN

A manifold model can explicitly represent the data through:

$$X = f(CF/\sqrt{d}) \in \mathbb{R}^{p,n}$$

where:

- ullet $F \in \mathbb{R}^{d,n}$ are the d features used to represent the data
- ▶ $C \in \mathbb{R}^{p,d}$ combines the d < n < p features
- $f(\cdot)$ is an entrywise locally smooth nonlinear function.

This data model is the same as a generative adversarial network (GAN) and is similar to dictionary learning and subspace clustering models where C is typically sparse.

https://hal-cea.archives-ouvertes.fr/cea-02529246/document

Additional approximation theory resources

Further references for the approximation theory perspective of deep learning include:

- ► Telgarsky's "Deep Learning Theory" course, lectures 1-11: http://mjt.cs.illinois.edu/courses/dlt-f20/
- ► Matthew Hirn's "Mathematics of Deep Learning" course: lectures 20-24.

https:

//matthewhirn.com/teaching/spring-2020-cmse-890-002/

▶ DNN Approximation Theory by Elbrachter et al. (19') https:

```
//www.mins.ee.ethz.ch/pubs/files/deep-it-2019.pdf
```

12