CS 6.5: Theories of Deep Learning
Problem Sheet 1

Prof. Jared Tanner

October 19, 2020

The questions marked with an asterix should be submitted for marking. The remaining questions entail computa-
tional experiments which should be attempted based on the available notebookﬂ but need not be submitted; they
will be discussed in tutorials.

Coding setup:

1.

For the practical exercises in the upcoming tutorials, you can complete them in whatever programming
language you prefer. When code is provided to you, however, it will be in Python (Google Colab) notebooks.

If you use Python on your own machine, make sure you have key libraries that you will require for machine
learning development, specifically: Tensorflow/Pytorch, SciPy, NumPy, Matplotlib, and Scikit-learn.

When working on deep neural networks, if/when you need to use a deep learning package, you are permitted
to use whichever you prefer. However, do note that when code (and solutions) are provided to you, this will
be in Tensorflow 2, and as such we recommend sticking to TF.

If you want to use Python but prefer not to install everything on your laptop, you can create a Google CoLab
notebook, which will already have most of the packages you will need installed and ready to use. Just click
‘File’ — ‘New Notebook’. Your notebooks get saved to your Google drive. Google Colab will be the most
straightforward option for completing any coding excercises given in the problem sheets. Simply navigate to
the notebook provided, click File — Save a Copy in Drive, and this will make a copy which you can edit
directly.

. Training Nets with Backpropagation

(a) (*) Consider a standard feedforward network defined by hy = z and hjy1 = o(WWh; + b)) for j =
1,...,N —1, and define the loss as the sum of squared errors, > [|hn(2;) — y;||2. Derive the formulae
used for ‘backpropagation’, which would be used to update the weights and biases in the network when
optimising the loss function using gradient descent.

(b) Consider a XOR problem, i.e. data points z; € {0,1}? for all i, with points (0,0), (1,1) labelled 0, and
(1,0), (0,1) labelled 1.

i. Can a linear classifier correctly classify these points? Sketch the domain and the desired decision
boundary of your classifier to motivate your answer.

ii. Next, you will train a single-hidden-layer network classifer with sigmoid activations from scratch
(without help from Tensorflow or Pytorch) to solve XOR. In the notbook attached, calculate the
required gradient updates and use these to fill in the NeuralNetwork.backprop() function, which
will allow you to then train the network, and visualise the results. Take note of how the learnt
decision boundary compares with what you expected.

Thttps://colab.research.google.com/drive/1Yoktyk3505WRaaxYfyHKObHPk-SQ1RmS?7usp=sharing

https://colab.research.google.com
https://colab.research.google.com/drive/1Yoktyk35O5WRaaxYfyHK0bHPk-SQ1RmS?usp=sharing
https://colab.research.google.com/drive/1Yoktyk35O5WRaaxYfyHK0bHPk-SQ1RmS?usp=sharing

(c)

The “Hello World” of supervised deep learning: MNIST digit classification

Now that you have trained a network from scratch yourself, you are unlikely to ever do this again. Deep
learning libraries have developed high level APIs which make it very easy to quickly build and train
models. The ability to use these APIs to quickly build and investigate small models is a very useful skill
in (even theoretical) deep learning research, allowing you to run experiments and probe hypotheses.
MNIST is a benchmark dataset of handwritten digits, that has approximately 70,000 example images
from 10 classes. Each 2-dimentional image is of size ‘28 x 28’, and belongs to one of the categories ‘0-9’.
Fill in the code for the missing steps in the attached notebook to prepare the data, add layers to the
model, compile the model with a loss function (which loss function will you use?), and then train, and
finally evaluate, your model.

2. Expressivity and depth

(a)

(*) In Yarotsky (2016) it is proven that f(z) = 22 on [0, 1] can be approximated with any error ¢ > 0 by
a ReLU network having the depth and the number of weights and computation units O(log(1/¢)). The
proof relies on the following statement:

Let f,, be the piece-wise linear interpolation of f(z) = 22 with 2™ + 1 uniformly distributed breakpoints
2%, k=0,...,2™. The function f,, approximates f with the error ¢,, = 272™~2 (in the /,, norm).
Prove this statement.

(*) Recall from lectures that the ‘sawtooth’ function can be created by iteratively composing the single-
hidden-layer network f(z) = o(20(x) —4o(x —1/2)), where o(z) = max(x,0). Can the same be achieved
with a network of the same width and depth if hard-tanh activations are used instead of ReLU? If so,
write down the corresponding function.

(*) Consider n-ap problem (the n-alternating-point problem). Dataset consisting of a set of n uniformly
spaced points within [0,1 — 27"] with alternating labels, i.e., the pairs ((z;,y;)) with z; = 27", and
y; = 0 when ¢ is even. How many layers does a width-2 ReLLU network need in order to have the capacity
to solve the n-ap problem? How wide would the layers need to be if there were only two layers?

Create an n-ap dataset for n = 3 and visualize the points by plotting. Implement and train a network of
the minimum necessary depth (identified in the previous question) to solve the n-ap problem for n = 8
(see the code outline in the attached notebook). How well does it perform?

Now, hardcode the weights which would solve the n-ap problem exactly, (e.g. specifying the weights of
the NN, or compose the function f(z) = 0(20(x) —40o(x —1/2)) multiple times) and plot the result. Now
add small Gaussian noise (¢ = 0.1) to the weights/coefficients. What happens to the function? Does
this tell us anything about the loss function which was optimised to train this network in the previous
question?

https://arxiv.org/pdf/1610.01145.pdf

