Randomised least-squares: Blendenpik
[Avron-Maymounkov-Toledo 2010]

ERan, m>>n

min | Az — b2, A
: _ (AT A\=1 AT —~1(NT
» Traditional method: normal eqn x = (A" A)""A'bor A=QR,x = (Q'D),
both O(mn?) cost
(4
» Randomised: generate random G € R¥"*™ and G Al=|Q||R
00N #
(Ons >N 4
R~1)y — bl|2’s normal egn via Krylov

(QR factorisation), then solve min,, ||(AR
» O(mnlogm + n3) cost using fast FFT-type transforms for G
> Succeséful because AR is well-conditioned \u\/\P

G A uey T

Explaining Blendenpik via Marchenko-Pastur

Claim: AR~ is well-conditioned with G Al=10|| B (QR)

Show this for G € R**™ Gaussian:

Proof: Let A= QR. Then GA = (GQ)R =: GR

» | (7 |is 4n x n rectangular Gaussian, hence well-cond LJ\/ avdﬂﬂn@? — Pty

23
> So by M-P, ky(R™)40(1) where G = QR is QR 6(6) ~ [rﬁ Jex+10)

> Thus GR = :/”_)R — Q(RR) = QR, so R~ = ™R ggf 35)
> Hence AR™! L ko(AR™) = ka(R™Y) = O(1) GIE)= 3 iy
I LB =€k

Qep!

Blendenpik: solving min, ||Ax — b||s using R
We have ro(AR™) =: ko(B) = O(1);
defining Rz = y, min, || Az — b|ls = min,, ||(AR™')y — b|| = min, || By — b||»
_
» B well-conditioned=-in normal equation ©
BBy =B} ol
ot g e AT
B well-conditioned ry(B) = O(1);
» solve (1) via CG (or a tailor-made method LSQR; nonexaminable) N

> exponential convergence, O(1) iterations! (or O(log <) |terations for € accuracy)
~ P each iteration requires w <— Bw, consisting of w <— R Lw (n x n triangular solve)
and w < Aw (m x nmat-vec multiplication); O(mn) cost overall

Blendenpik experiments

CG convergence, kz(A) = 10,10%, 10

10°

plairf CG

AT (Az —b)|

L L=re

Blendenpik. ‘ ‘ ‘ J
10 20 30 40 50 60 70 80 90 100

CG iterations
CG for AT Az = ATb vs. Blendenpik (AR™HT (AR Y2z = (AR™)Tb, m = 10000, n = 100

10»15 L

In practice, Blendenpik gets =~ x5 speedup over classical (Householder-QR based)

method when m > n

Randomised algorithm for Ax = b7

We've seen randomisation can be very successful for SVD and least-squares problems.
What about Ax = b? This is among the biggest open problems in (Randomised) NLA:

» Randomisation to find good preconditioner? e U
» Randomisation to 'deflate out’ large/small singval components? ol) L /DR

> ... Ocml(oﬁ\ﬂ)

fogt wstinewelt.
([g”(?\/akm e 0”%//

o)

'[T\/hK) rC\ Ct\\ Ce

Major breakthrough needed—any ideas?

Important (N)LA topics not treated

v

vVVvyVYyVyVYyVYYVYYVYY

tensors Otnlg*) [Kolda-Bader 2009]
FFT (valueSHcoefficientsNap for polynomials) [e.g. Golub and Van Loan 2012]
sparse direct solvers ‘ B [Duff, Erisman, Reid 2017]
multigrid - [e.g. Elman-Silvester-Wathen 2014]
functions of matrices '&K{%\ @QQ(A =T A< LAQ J\?Aft [Higham 2008]
generalised, polynomial e|genvalue problems [Guttel-Tisseur 2017]
perturbation theory (DaV|s Kahan etc) \WT\S [Stewart-Sun 1990]
compressed sensmgww\\ o -ﬂl [Foucart-Rauhut 2013]
model order reduction [Benner-Gugercin-Willcox 2015]
communication-avoiding algorithms [e.g. Ballard-Demmel-Holtz-Schwartz 2011]
(P U

Tl

ced

C6.1 Numerical Linear Algebra, summary
1st half

» SVD and its properties (Courant-Fisher etc), applications (low-rank)
» Direct methods (LU) for linear systems and least-squares problems (QR)
» Stability of algorithms

2nd half

» Direct method (QR algorithm) for eigenvalue problems, SVD

» Krylov subspace methods for linear systems (GMRES, CG) and eigenvalue
problems (Arnoldi, Lanczos)

» Randomised algorithms for SVD and least-squares

Where does this course lead to?
Courses with significant intersection
» (C6.3 Approximation of Functions (Prof. Nick Trefethen, MT): Chebyshev
polynomials/approximation theory
» C7.7 Random Matrix Theory (Prof. Jon Keating): for theoretical underpinnings of
Randomised NLA
» C6.4 Finite Element Method for PDEs (Prof. Patrick Farrell): NLA arising in
solutions of PDEs
» C6.2 Continuous Optimisation (Prof. Cora Cartis): NLA in optimisation problems

and many more: differential equations, data science, optimisation, machine learning,...
NLA is everywhere in computational maths

Thank you for your interest in NLA!

