
Randomised least-squares: Blendenpik
[Avron-Maymounkov-Toledo 2010]

min
x
‖Ax− b‖2, A ∈ Rm×n, m� n

I Traditional method: normal eqn x = (ATA)−1AT b or A = QR, x = R−1(QT b),
both O(mn2) cost

I Randomised: generate random G ∈ R4n×m, and G A = Q̂ R̂

(QR factorisation), then solve miny ‖(AR̂−1)y − b‖2’s normal eqn via Krylov
I O(mn logm+ n3) cost using fast FFT-type transforms for G
I Successful because AR̂−1 is well-conditioned



Explaining Blendenpik via Marchenko-Pastur

Claim: AR̂−1 is well-conditioned with G A = Q̂ R̂ (QR)

Show this for G ∈ R4n×m Gaussian:

Proof: Let A = QR. Then GA = (GQ)R =: G̃R

I G̃ is 4n× n rectangular Gaussian, hence well-cond

I So by M-P, κ2(R̃−1) = O(1) where G̃ = Q̃R̃ is QR
I Thus G̃R = (Q̃R̃)R = Q̃(R̃R) = Q̃R̂, so R̂−1 = R−1R̃−1

I Hence AR̂−1 = QR̃−1, κ2(AR̂−1) = κ2(R̃−1) = O(1)



Blendenpik: solving minx ‖Ax− b‖2 using R̂
We have κ2(AR̂−1) =: κ2(B) = O(1);
defining R̂x = y, minx ‖Ax− b‖2 = miny ‖(AR̂−1)y − b‖2 = miny ‖By − b‖2
I B well-conditioned⇒in normal equation

BTBy = BT b (1)

B well-conditioned κ2(B) = O(1);
I solve (1) via CG (or a tailor-made method LSQR; nonexaminable)

I exponential convergence, O(1) iterations! (or O(log 1
ε ) iterations for ε accuracy)

I each iteration requires w ← Bw, consisting of w ← R̂−1w (n× n triangular solve)
and w ← Aw (m× nmat-vec multiplication); O(mn) cost overall



Blendenpik experiments

10 20 30 40 50 60 70 80 90 100

CG iterations

10
-15

10
-10

10
-5

10
0

Blendenpik

CG for AT Ax = AT b vs. Blendenpik (AR−1)T (AR−1)x = (AR−1)T b, m = 10000, n = 100

In practice, Blendenpik gets ≈ ×5 speedup over classical (Householder-QR based)
method when m� n



Randomised algorithm for Ax = b?
We’ve seen randomisation can be very successful for SVD and least-squares problems.
What about Ax = b? This is among the biggest open problems in (Randomised) NLA:
I Randomisation to find good preconditioner?
I Randomisation to ’deflate out’ large/small singval components?
I ...

Major breakthrough needed—any ideas?



Important (N)LA topics not treated
I tensors [Kolda-Bader 2009]
I FFT (values↔coefficients map for polynomials) [e.g. Golub and Van Loan 2012]
I sparse direct solvers [Duff, Erisman, Reid 2017]
I multigrid [e.g. Elman-Silvester-Wathen 2014]
I functions of matrices [Higham 2008]
I generalised, polynomial eigenvalue problems [Guttel-Tisseur 2017]
I perturbation theory (Davis-Kahan etc) [Stewart-Sun 1990]
I compressed sensing [Foucart-Rauhut 2013]
I model order reduction [Benner-Gugercin-Willcox 2015]
I communication-avoiding algorithms [e.g. Ballard-Demmel-Holtz-Schwartz 2011]



C6.1 Numerical Linear Algebra, summary
1st half
I SVD and its properties (Courant-Fisher etc), applications (low-rank)
I Direct methods (LU) for linear systems and least-squares problems (QR)
I Stability of algorithms

2nd half
I Direct method (QR algorithm) for eigenvalue problems, SVD
I Krylov subspace methods for linear systems (GMRES, CG) and eigenvalue

problems (Arnoldi, Lanczos)
I Randomised algorithms for SVD and least-squares



Where does this course lead to?
Courses with significant intersection
I C6.3 Approximation of Functions (Prof. Nick Trefethen, MT): Chebyshev

polynomials/approximation theory
I C7.7 Random Matrix Theory (Prof. Jon Keating): for theoretical underpinnings of

Randomised NLA
I C6.4 Finite Element Method for PDEs (Prof. Patrick Farrell): NLA arising in

solutions of PDEs
I C6.2 Continuous Optimisation (Prof. Cora Cartis): NLA in optimisation problems

and many more: differential equations, data science, optimisation, machine learning,...
NLA is everywhere in computational maths

Thank you for your interest in NLA!


