Randomised least-squares: Blendenpik

[Avron-Maymounkov-Toledo 2010]

$$\min_{x} \|Ax - b\|_2, \qquad A \in \mathbb{R}^{m \times n}, \ m \gg n$$

▶ Traditional method: normal eqn $x = (A^T A)^{-1} A^T b$ or $A = QR, x = R^{-1}(Q^T b)$, both $O(mn^2)$ cost

 \blacktriangleright Randomised: generate random $G \in \mathbb{R}^{4n imes m}$, and

$$G \qquad A = \hat{Q} \hat{R}$$

(QR factorisation), then solve $\min_y \|(A\hat{R}^{-1})y - b\|_2$'s normal eqn via Krylov

- ▶ $O(mn\log m + n^3)$ cost using fast FFT-type transforms for G
- Successful because $A\hat{R}^{-1}$ is well-conditioned

Explaining Blendenpik via Marchenko-Pastur

Claim: $A\hat{R}^{-1}$ is well-conditioned with

$$G \qquad A = \hat{Q} \hat{R} (QR)$$

Show this for $G \in \mathbb{R}^{4n \times m}$ Gaussian:

Proof: Let A = QR. Then $GA = (GQ)R =: \tilde{G}R$

$$\begin{array}{c} \tilde{G} \\ \tilde{$$

Blendenpik: solving $\min_x ||Ax - b||_2$ using \hat{R}

We have $\kappa_2(A\hat{R}^{-1}) =: \kappa_2(B) = O(1);$ defining $\hat{R}x = y$, $\min_x ||Ax - b||_2 = \min_y ||(A\hat{R}^{-1})y - b||_2 = \min_y ||By - b||_2$

▶ B well-conditioned \Rightarrow in normal equation

$$B^T B y = B^T b \tag{1}$$

B well-conditioned $\kappa_2(B) = O(1)$;

solve (1) via CG (or a tailor-made method LSQR; nonexaminable)

exponential convergence, O(1) iterations! (or O(log 1/ϵ) iterations for ϵ accuracy)
each iteration requires w ← Bw, consisting of w ← R⁻¹w (n × n triangular solve) and w ← Aw (m × nmat-vec multiplication); O(mn) cost overall

Blendenpik experiments

CG for $A^T A x = A^T b$ vs. Blendenpik $(AR^{-1})^T (AR^{-1}) x = (AR^{-1})^T b$, m = 10000, n = 100

In practice, Blendenpik gets $\approx \times 5$ speedup over classical (Householder-QR based) method when $m \gg n$

Randomised algorithm for Ax = b?

► ...

We've seen randomisation can be very successful for SVD and least-squares problems. What about Ax = b? This is among the biggest open problems in (Randomised) NLA:

- Randomisation to find good preconditioner?
- Randomisation to 'deflate out' large/small singual components?

Major breakthrough needed—any ideas?

Important (N)LA topics not treated

tensors

- ► FFT (values↔coefficients map for polynomials)
- sparse direct solvers
- multigrid
- functions of matrices
- generalised, polynomial eigenvalue problems
- perturbation theory (Davis-Kahan etc)
- compressed sensing
- model order reduction
- communication-avoiding algorithms

[Kolda-Bader 2009]

[e.g. Golub and Van Loan 2012]

[Duff, Erisman, Reid 2017]

[e.g. Elman-Silvester-Wathen 2014]

[Higham 2008]

[Guttel-Tisseur 2017]

[Stewart-Sun 1990]

[Foucart-Rauhut 2013]

[Benner-Gugercin-Willcox 2015]

[e.g. Ballard-Demmel-Holtz-Schwartz 2011]

C6.1 Numerical Linear Algebra, summary

1st half

- SVD and its properties (Courant-Fisher etc), applications (low-rank)
- ▶ Direct methods (LU) for linear systems and least-squares problems (QR)
- Stability of algorithms

2nd half

- Direct method (QR algorithm) for eigenvalue problems, SVD
- Krylov subspace methods for linear systems (GMRES, CG) and eigenvalue problems (Arnoldi, Lanczos)
- Randomised algorithms for SVD and least-squares

Where does this course lead to?

Courses with significant intersection

- C6.3 Approximation of Functions (Prof. Nick Trefethen, MT): Chebyshev polynomials/approximation theory
- C7.7 Random Matrix Theory (Prof. Jon Keating): for theoretical underpinnings of Randomised NLA
- C6.4 Finite Element Method for PDEs (Prof. Patrick Farrell): NLA arising in solutions of PDEs
- ► C6.2 Continuous Optimisation (Prof. Cora Cartis): NLA in optimisation problems

and many more: differential equations, data science, optimisation, machine learning,... NLA is everywhere in computational maths

Thank you for your interest in NLA!