## Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- Direct methods (LU for $A x=b$, QRalg for $A x=\lambda x$ or $A=U \Sigma V^{T}$ ):
- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- But not beyond; cubic complexity $O\left(n^{3}\right)$ or $O\left(m n^{2}\right)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
- Very fast when it works (nice spectrum etc)
- Otherwise, not so much; need for preconditioning


## Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- Direct methods (LU for $A x=b$, QRalg for $A x=\lambda x$ or $A=U \Sigma V^{T}$ ):
- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- But not beyond; cubic complexity $O\left(n^{3}\right)$ or $O\left(m n^{2}\right)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
- Very fast when it works (nice spectrum etc)
- Otherwise, not so much; need for preconditioning
- Randomised algorithms
- Output differs at every run
- Ideally succeed with enormous probability, e.g. $1-\exp (-c n)$
- Often by far the fastest\&only feasible approach
- Not for all problems-active field of research

We'll cover two NLA topics where randomisation very successful: low-rank approximation (randomised SVD), and overdetermined least-squares problems

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$
for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- Singular Value Decomposition (SVD): $A=U \Sigma V^{T}$

$$
\begin{aligned}
& \text { for any } A \in \mathbb{R}^{m \times n}, m \geq n \text {. Here } U^{T} U=V^{T} V=I_{n}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \text {, } \\
& \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0 .
\end{aligned}
$$

SVD proof: Take Gram matrix $A^{T} A$ and its eigendecomposition $A^{T} A=V \Lambda V^{T} . \Lambda$ is nonnegative, and $(A V)^{T}(A V)$ is diagonal, so $A V=U \Sigma$ for some orthonormal $U$. Right-multiply $V^{T}$.

SVD useful for

- Finding column space, row space, null space, rank, ...
- Matrix analysis, polar decomposition, ...
- Low-rank approximation


## (Most) important result in Numerical Linear Algebra

Given $A \in \mathbb{R}^{m \times n}(m \geq n)$, find low-rank (rank $r$ ) approximation


- Optimal solution $A_{r}=U_{r} \Sigma_{r} V_{r}^{T}$ via truncated SVD

$$
U_{r}=U(:, 1: r), \Sigma_{r}=\Sigma(1: r, 1: r), V_{r}=V(:, 1: r) \text {, giving }
$$

$$
\left\|A-A_{r}\right\|=\left\|\operatorname{diag}\left(\sigma_{r+1}, \ldots, \sigma_{n}\right)\right\|
$$

in any unitarily invariant norm [Horn-Johnson 1985]

- But that costs $O\left(m n^{2}\right)$ (bidiagonalisation+QR); look for cheaper approximation


## Randomised SVD by HMT

1. Form a random matrix $X$
2. Compr , usually $r \ll n$.
3. Compute $A X \cdot \in \mathbb{P}^{m \times r}$
4. QR factorisation $A X=1 Q R$.
5. 


$\approx Q$ $Q^{T} A \quad\left(=\left(Q U_{0}\right) \Sigma_{0} V_{0}^{T}\right)$ is rank- $r$ approximation.

- $O(m n r)$ cost for dense $A$
- Near-optimal approximation guarantee: for any $\hat{r}<r$,

$$
\begin{aligned}
& \text { oximation guarantee: for any } \hat{r}<r \text {, } \\
& \qquad \mathbb{E}\|A-\hat{A}\|_{F} \leq \frac{\left(1+\frac{r}{r-\hat{r}-1}\right)}{\left\|A-A_{\hat{r}}\right\|_{F}} \text {-optinal. }
\end{aligned}
$$

where $A_{\hat{r}}$ is the rank $\hat{r}$-truncated SVD (expectation w.r.t. random matrix $X$ )
Goal: understand this, or at least why $\mathbb{E}\|A-\hat{A}\|=O(1)\left\|A-A_{\hat{r}}\right\|$

## Pseudoinverse and projectors

Given $M \in \mathbb{R}^{m \times n}$ with economical SVD $M=U_{r} \underline{S}_{r} \underline{V}_{n}$
$\left(U_{r} \in \mathbb{R}^{m \times r}, \Sigma_{r} \in \mathbb{R}^{r \times r}, V_{r} \in \mathbb{R}^{n \times r}\right.$ where $r=\operatorname{rank}(M)$ so that $\left.\Sigma_{r} \succ 0\right)$, the

## $M M^{+} \pm 2$

 pseudoinverse $M^{\dagger}$ is$$
\left.M\right|^{\dagger}=V_{r} \Sigma_{r}^{-} \bar{U}_{r}^{T} \in \mathbb{R}^{n \times m}
$$

- satisfies $M M^{\dagger} M=M, M^{\dagger} M M^{\dagger}=M^{\dagger}, \mathcal{A l}_{1} A_{\uparrow}^{\dagger}=\left(A A_{1}^{\dagger}\right)^{T}, A_{i}^{\dagger} A=\left(A_{i}^{\dagger} A\right)^{T}$ (which are often taken to be the definition-above is much simpler IMO)
- $M^{\dagger}=M^{-1}$ if $M$ nonsingular

A square matrix $P \in \mathbb{R}^{n \times n}$ is called a projector if $P^{2}=P$

- $P$ diagonalisable and all eigenvalues 1 or 0

- $\|P\|_{2} \geq 1$ and $\|P\|_{2}=1$ iff $P=P^{T}$; in this case $P$ is called orthogonal projector
- $I-P$ is another projector, and unless $P=0$ or $P=I,\|I-P\|_{2}=\|P\|_{2}$ : Schur form $Q P Q^{*}=\left[\begin{array}{cc}I & B \\ 0 & 0\end{array}\right], Q(I-P) Q^{*}=\left[\begin{array}{cc}0 & -B \\ 0 & I\end{array}\right]$;


## HMT approximant: analysis (down from 70 pages!)

$\hat{A}=Q Q^{T} A$, where $A X=Q R$. Goal: $\|A-\hat{A}\|=\left\|\left(I_{m}-Q Q^{T}\right) A\right\|=O\left(\left\|A-A_{\hat{r}}\right\|\right)$.

1. $Q Q^{T} A X=A X\left(Q Q^{T}\right.$ is orthogonal projector onto $\left.\operatorname{span}(A X)\right)$. Hence $\left(I_{m}-Q Q^{T}\right) A X=0$, so $A-\hat{A}=\left(I_{m}-Q Q^{T}\right) A\left(I_{n}-X M^{T}\right)$ for any $M \in \mathbb{R}^{n \times r}$.
2. Set $M^{T}=\left(V^{T} X\right)^{\dagger} V^{T}$ where $V=\left[v_{1}, \ldots, v_{\hat{r}}\right] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of $A(\hat{r} \leq r)$.
3. $V V^{T}\left(I-X M^{T}\right)=V V^{T}\left(I-X\left(V^{T} X\right)^{\dagger} V^{T}\right)=0$ if $V^{T} X$ full row-rank (generic assumption), so $A-\hat{A}=\left(I_{m}-Q Q^{T}\right) A\left(I-V V^{T}\right)\left(I_{n}-X M^{T}\right)$.
4. Taking norms, $\|A-\hat{A}\|_{2}=\left\|\left(I_{m}-Q Q^{T}\right) A\left(I-V V^{T}\right)\left(I_{n}-X M^{T}\right)\right\|_{2}=$ $\left\|\left(I_{m}-Q Q^{T}\right) U_{2} \Sigma_{2} V_{2}^{T}\left(I_{n}-X M^{T}\right)\right\|_{2}$ where $\left[V, V_{2}\right]$ is orthogonal, so

$$
\|A-\hat{A}\|_{2} \leq\left\|\Sigma_{2}\right\|_{2}\left\|\left(I_{n}-X M^{T}\right)\right\|_{2}=\underbrace{\left\|\Sigma_{2}\right\|_{2}}\left\|X M^{T}\right\|_{2}
$$

$$
\left(X \pi^{\top}\right)^{2}=X M^{\top} \text { optimal rank- } \hat{r}
$$

To see why $\left\|X M^{T}\right\|_{2}=O(1)$ (with high probability), we need random matrix theory

## Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix $X \in \mathbb{R}^{m \times n}(m \geq n)$ with iid $X_{i j}$ (mean 0 , variance 1) follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)





$\sigma_{\max }(X) \approx \sqrt{m}+\sqrt{n}, \sigma_{\min }(X) \approx \sqrt{m}-\sqrt{n}$, hence $\kappa_{2}(X) \approx \frac{1+\sqrt{m / n}}{1-\sqrt{m / n}}=O(1)$,


Key fact in many breakthroughs in computational maths!

- Randomised SVD, Blendenpik (randomised least-squares)
- (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix concentration inequalities [Tropp 11], Function approx. by least-squares [Cohen-Davenport-Leviatan 13]


## $\left\|X M^{T}\right\|_{2}=O(1)$

Recall we've shown for $M^{T}=\left(V^{T} X\right)^{\dagger} V^{T}, X \in \mathbb{R}^{n \times r}$

$$
\|A-\hat{A}\|_{2} \leq\left\|\Sigma_{2}\right\|_{2}\left\|\left(I_{n}-X M^{T}\right)\right\|_{2}=\underbrace{\left\|\Sigma_{2}\right\|_{2}}_{\text {optimal rank- } \hat{r}}\left\|X M^{T}\right\|_{2}
$$

Now $\left\|X M^{T}\right\|_{2}=\left\|X\left(V^{T} X\right)^{\dagger} V^{T}\right\|_{2}=\left\|X\left(V^{T} X\right)^{\dagger}\right\|_{2} \leq\|X\|_{2}\left\|\left(V^{T} X\right)^{\dagger}\right\|_{2}$.
Assume $X$ is random Gaussian $X_{i j} \sim \mathcal{N}(0,1)$. Then
$\rightarrow V^{T} X$ is a Gaussian matrix (orthogonal $\times$ Gaussian=Gaussian; exercise), hence $\left\|\left(V^{T} X\right)^{\dagger}\right\|=1 / \sigma_{\min }\left(V^{T} X\right) \lesssim 1 /(\sqrt{r}-\sqrt{\hat{r}})$ by M-P

- $\|X\|_{2} \lesssim \sqrt{m}+\sqrt{r}$ by M-P

Together we get $\left\|X M^{T}\right\|_{2} \lesssim \frac{\sqrt{m}+\sqrt{r}}{\sqrt{r}-\sqrt{r}}=" O(1) "$

- When $X$ non-Gaussian random matrix, perform similarly, harder to analyze AX can be cheaper


## Precise analysis for HMT (nonexaminable)

## Theorem (Reproduces HMT 2011 Thm.10.5)

If $X$ Gaussian, for any $\hat{r}<r, \mathbb{E}\left\|E_{\mathrm{HMT}}\right\|_{F} \leq \sqrt{\mathbb{E}\left\|E_{\mathrm{HMT}}\right\|_{F}^{2}}=\sqrt{1+\frac{r}{r-\hat{r}-1}}\left\|A-A_{\hat{r}}\right\|_{F}$. proof. First ineq: Cauchy-Schwarz. $\left\|E_{\text {HMT }}\right\|_{F}^{2}$ is

$$
\begin{aligned}
& \left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|_{F}^{2}=\Downarrow\left\|A\left(I-V V^{T}\right)\right\|_{F}^{2}+\left\|A\left(I-V V^{T}\right) \mathcal{P}_{X, V}\right\|_{F}^{2} \\
& =\left\|\Sigma_{2}\right\|_{F}^{2}+\left\|\Sigma_{2} \mathcal{P}_{X, V}\right\|_{F}^{2}=\left\|\Sigma_{2}\right\|_{F}^{2}+\left\|\Sigma_{2}\left(V_{\perp}^{T} X\right)\left(V^{T} X\right)^{\dagger} V^{T}\right\|_{F}^{2} .
\end{aligned}
$$

Now if $X$ is Gaussian then $V_{\perp}^{T} X \in \mathbb{R}^{(n-\hat{r}) \times r}$ and $V^{T} X \in \mathbb{R}^{\hat{r} \times r}$ are independent Gaussian. Hence by [HMT Prop. 10.1] $\mathbb{E}\left\|\Sigma_{2}\left(V_{\perp}^{T} X\right)\left(V^{T} X\right)^{\dagger}\right\|_{F}^{2}=\frac{r}{r-\hat{r}-1}\left\|\Sigma_{2}\right\|_{F}^{2}$, so

$$
\mathbb{E}\left\|E_{\mathrm{HMT}}\right\|_{F}^{2}=\left(1+\frac{r}{r-\hat{r}-1}\right)\left\|\Sigma_{2}\right\|_{F}^{2} .
$$

## Generalized Nyström

$X \in \mathbb{R}^{n \times r}$ as before; set $Y \in \mathbb{R}^{n \times(r+\ell)}$, and

$$
\hat{A}=\left(A X\left(Y^{T} A X\right)^{\dagger} Y^{T}\right) A=\mathcal{P}_{A X, Y} A
$$

Then $A-\hat{A}=\left(I-\mathcal{P}_{A X, Y}\right) A=\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-X M^{T}\right)$; choose $M$ s.t. $X M^{T}=X\left(V^{T} X\right)^{\dagger} V^{T}=\mathcal{P}_{X, V}$. Then $\mathcal{P}_{A X, Y}, \mathcal{P}_{X, V}$ projections, and

$$
\begin{aligned}
\|A-\hat{A}\| & =\left\|\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-\mathcal{P}_{X, V}\right)\right\| \\
& \leq\left\|\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\| \\
& \leq\left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|+\left\|\mathcal{P}_{A X, Y} A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\| .
\end{aligned}
$$

- Note $\left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|$ exact same as HMT error
- Extra term $\left\|\mathcal{P}_{A X, Y}\right\|_{2}=O(1)$ as before if $c>1$ in $Y \in \mathbb{R}^{m \times c r}$
- Overall, about $\left(1+\left\|\mathcal{P}_{A X, Y}\right\|_{2}\right) \approx\left(1+\frac{\sqrt{n}+\sqrt{r+\ell}}{\sqrt{r+\ell}-\sqrt{r}}\right)$ times bigger expected error than HMT, still near-optimal and much faster $O\left(m n \log n+r^{3}\right)$

