Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

» Direct methods (LU for Az = b, QRalg for Az = Az or A = UEVT):

» Incredibly reliable, backward stable

» Works like magic if n < 10000

> But not beyond; cubic complexity O(n?) or O(mn?)
» lterative methods (GMRES, CG, Arnoldi, Lanczos)

» Very fast when it works (nice spectrum etc)

» Otherwise, not so much; need for preconditioning
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» Randomised algorithms

» Output differs at every run

» Ideally succeed with enormous probability, e.g. 1 — exp(—cn)
» Often by far the fastest&only feasible approach —v
» Not for all problems—active field of research

We'll cover two NLA topics where randomisation very successful: low-rank
approximation (randomised SVD), and overdetermined least-squares problems



SVD: the most important matrix decomposition

» Symmetric eigenvalue decomposition: A = VAVT
for symmetric A € R™*", where VIV = I,,, A = diag(\1,..., \,).

> Singular Value Decomposition (SVD): A = UXVT
for any A € R™*", m >n. Here UTU = VIV = I,,, ¥ = diag(o1,...,0,),
op>092>-->0y,2>0.

SVD proof: Take Gram matrix AT A and its eigendecomposition ATA = VAVT. A'is
nonnegative, and (AV)T(AV) is diagonal, so AV = UX. for some orthonormal U.
Right-multiply V7.

SVD useful for

» Finding column space, row space, null space, rank, ...
» Matrix analysis, polar decomposition, ...
» Low-rank approximation



(Most) important result in Numerical Linear Algebra

Given A € R™*™ (m > n), find low-rank (rank r) approximation
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» Optimal solution A, = U,.X,. V.1 via truncated SVD
U =U(1:7r),2. =X%1:r1:7),V, =V(,1:7r), giving

|A = Ar|| = ||diag(ori1, - .-, om)

in any unitarily invariant norm [Horn-Johnson 1985]
» But that costs O(mn?) (bidiagonalisation+QR); look for cheaper approximation



Randomised SVD by HMT
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» O(mnr) cost for dense A
» Near-optimal approximation guarantee: for any 7 < r,

E|A - AllF < (1 +

[Halko-Martinsson-Tropp, SIAM Review 2011]

. Form a random matrix | X € R™*", usually » < n.
. Compute AX cg”""

. QR factorisation AX TﬁR]
A\
v

(= (QUy)XoVy) is rank-r approximation.
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where A; is the rank 7-truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why E||A — Al = O(1)||4 — As




Pseudoinverse and projectors
M\ U,

Given M € R™*™ with economical SVD \?f
(U, €e R™*7 3, € R™"V, € R"™" where r = rank(M) so that 3, > 0), the HHM%Z

pseudoinverse M is & M ful e, 7
M} =VJE0r € R =l MAU=T
@ _@ Jm/l@nu VCL HHJFA Z
» satisfies MMM = M, MTMMT = Mt 04(41 AAT é{TA (which

are often taken to be the definition—above is much S|mpler IM%
» MT = M1 if M nonsingular

A square matrix P € R™*" is called a projector if P> =P

» P diagonalisable and all eigenvalues 1 or 0
» ||P|l2 > 1 and ||P||2 = 1 iff P = PT; in this case P is called orthogonal projector
» [ — P is another projector, and unless P =0 or P = = || P||2:

Schur form QPQ* = [[ B], QI — P)Q* = [J /1 see [Szyld 2006]




HMT approximant: analysis (down from 70 pages!)

A=

1.

QQTA, where AX = QR. Goal: |A— A|| = ||(I, — QQT)A|| = O(||A — As])).

QQTAX = AX (QQT is orthogonal projector onto span(A4X)). Hence
(I —QQTYAX =0,50 A— A = (I, - QQTYA(I,, — X M) for any M € R"*".

Set M7 = (VI X)TVT where V = [vq,...,v;] € R™" top sing vecs of A (7 < r).
=1V Uﬂg?& (v V,j

VVI(I - XxMT) = VVT(I X(VITX)IVT) =0 if VT X full row-rank (generic
assumption), so A — A = (I, - QQTA(I — vVVT)(I, \[)\(/MT) /

Taking norms, ||A — Alls = ||(In — QQT)A(I — VVT)(In — XMT)||p =

F/J
(I, — QR U3 VS (1, — XMT )|l2 where [V, V5] is orthogonal, so
f& ,
|4 - All2 < HZ2”2H(I —XMT)Hz = B2l XM
N——

@h ) = KH( optimal rank-7

To see why | X M7 || = O(1) (with high probability), we need random matrix theory



Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix X € R™*" (m > n) with iid X;; (mean 0, variance 1)

follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)
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Key fact in many breakthroughs in computational maths!

» Randomised SVD, Blendenpik (randomised least-squares)

» (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix
concentration inequalities [Tropp 11], Function approx. by least-squares
[Cohen-Davenport-Leviatan 13]



| XM" ]|y = O(1)
Recall we've shown for M7 = (VI X)TVT X ¢ R™*"

)

|A — A2 < [|Zal2]|(Zn, — XMT)|]2 = S22 | XMT2
——

optimal rank-7

Now [ XMT|s = | X (VTX)TVT 2 = [X(VIX) 2 < [ X[2l(VTX)T2.
Assume X js random Gaussian X;; ~ N'(0,1). Then

\ o O rKEe : : : . :
» V' X is a Gaussian matrix (orthogonalx Gaussian=Gaussian; exerC|sﬂjhence
IVIX)T| = 1/omin(VTX) S 1/(V7 — V7) by M-P
> [ X]l2 S v/m+ /1 by M-P
Together we get [|[XM7T ||y < % ="0(1)”
» When X non-Gaussian random matrix, perform similarly, harder to analyze

X o be ¢ beeper



Precise analysis for HMT (nonexaminable)
Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any # < r, El|Euvr || r < \/E|Baurl3 = /1 + —=[14 — As|.

PROOF. First ineq: Cauchy-Schwarz. ||Egyr||% is

IA(I = VvV = Pxv)| =HIA - VVOIE + 1A = VV ) Px v
= [1B2ll% + 1Z2Pxv 7 = [1Z2lF + [ Z2(VEX)(VIX) V5.

Now if X is Gaussian then VI'X € R(®=")*" and VT X € R™*" are independent
Gaussian. Hence by [HMT Prop. 10.1] E[|S2(VEX)(VTX)T||2 = —5—|22]|%, so

r—r—1

.
E||Eavr|7 = <1 + m) 15213



Generalized Nystrom
X € R"*" as before; set Y € R"*("t) and [N. arXiv 2020]

A= (AX(YTAX)TYT)A = PaxvA

Then A — A= (I — Paxy)A= (I —Paxy)AI — XMT); choose M s.t.
XMT = X(VIX)'VT =Pxy. Then Pax.y,Px,v projections, and

1A= Al = |(I = Paxy)A( — Pxv)|
< (T = Paxy)A(I = VVI(I = Pxy)l
< AT = VVH(I = Pxv)ll + IPaxy AU = VVE)(I = Pxy)].

» Note |A(I — VVT)(I — Pxy)| exact same as HMT error
» Extra term ||Pax y|l2 = O(1) as before if ¢ > 1in Y € R™*¢"
n+vr+ly - .
» Overall, about (14 ||Paxyl|l2) = (1+ \\Z—JJ:T_;F) times bigger expected error than

HMT, still near-optimal and much faster O(mnlogn + r3)



