Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- ▶ Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):
 - Incredibly reliable, backward stable
 - ▶ Works like magic if $n \lesssim 10000$
 - ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- ► Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning

Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- ▶ Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):
 - ► Incredibly reliable, backward stable
 - ▶ Works like magic if $n \leq 10000$
 - ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- ► Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning
- Randomised algorithms
 - Output differs at every run
 - ldeally succeed with enormous probability, e.g. $1 \exp(-cn)$
 - ► Often by far the fastest&only feasible approach
 - ▶ Not for all problems—active field of research

We'll cover two NLA topics where randomisation very successful: **low-rank** approximation (randomised SVD), and overdetermined least-squares problems

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 > \sigma_2 > \cdots > \sigma_n > 0$.

SVD proof: Take Gram matrix A^TA and its eigendecomposition $A^TA = V\Lambda V^T$. Λ is nonnegative, and $(AV)^T(AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

SVD useful for

- Finding column space, row space, null space, rank, ...
- ► Matrix analysis, polar decomposition, ...
- ► Low-rank approximation

(Most) important result in Numerical Linear Algebra

Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, find low-rank (rank r) approximation

▶ Optimal solution $A_r = U_r \Sigma_r V_r^T$ via truncated SVD $U_r = U(:, 1:r), \Sigma_r = \Sigma(1:r, 1:r), V_r = V(:, 1:r),$ giving

$$||A - A_r|| = ||\mathsf{diag}(\sigma_{r+1}, \dots, \sigma_n)||$$

in any unitarily invariant norm [Horn-Johnson 1985]

▶ But that costs $O(mn^2)$ (bidiagonalisation+QR); look for cheaper approximation

Randomised SVD by HMT

[Halko-Martinsson-Tropp, SIAM Review 2011]

- 1. Form a random matrix $X \in \mathbb{R}^{n \times r}$, usually $r \ll n$.
- 2. Compute $AX \subset \mathbb{C}^{r \times r}$
- 3. QR factorisation AX = QR.

- ightharpoonup O(mnr) cost for dense A
- Near-optimal approximation guarantee: for any $\hat{r} < r$,

$$\mathbb{E}\|A-\hat{A}\|_F \leq \left(1+\frac{r}{r-\hat{r}-1}\right) \|A-A_{\hat{r}}\|_F$$

where $A_{\hat{r}}$ is the rank \hat{r} -truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why $\mathbb{E}||A - \hat{A}|| = O(1)||A - A_{\hat{r}}||$

Pseudoinverse and projectors

Given $M \in \mathbb{R}^{m \times n}$ with economical SVD $M = U_r \Sigma_r V_r^T$ $(U_r \in \mathbb{R}^{m \times r}, \Sigma_r \in \mathbb{R}^{r \times r}, V_r \in \mathbb{R}^{n \times r} \text{ where } r = \operatorname{rank}(M) \text{ so that } \Sigma_r \succ 0)$, the pseudoinverse M^\dagger is

$$M^{\dagger} = V_r \Sigma_r^{\top} U_r^{T} \in \mathbb{R}^{n \times m}$$

satisfies $MM^{\dagger}M = M$, $M^{\dagger}MM^{\dagger} = M^{\dagger}$, $AA^{\dagger} = (AA^{\dagger})^T$, $A^{\dagger}A = (A^{\dagger}A)^T$ (which are often taken to be the definition—above is much simpler IMO)

 $ightharpoonup M^\dagger = M^{-1}$ if M nonsingular

A square matrix $P \in \mathbb{R}^{n \times n}$ is called a **projector** if $P^2 = P$

- ightharpoonup P diagonalisable and all eigenvalues 1 or 0
- ▶ $||P||_2 \ge 1$ and $||P||_2 = 1$ iff $P = P^T$; in this case P is called orthogonal projector
- ▶ I-P is another projector, and unless P=0 or P=I, $\|I-P\|_2=\|P\|_2$: Schur form $QPQ^*=\left[\begin{smallmatrix}I&B\\0&0\end{smallmatrix}\right],\ Q(I-P)Q^*=\left[\begin{smallmatrix}0&-B\\0&I\end{smallmatrix}\right];$ see [Szyld 2006]

HMT approximant: analysis (down from 70 pages!)

$$\hat{A} = QQ^T A$$
, where $AX = QR$. Goal: $||A - \hat{A}|| = ||(I_m - QQ^T)A|| = O(||A - A_{\hat{r}}||)$.

- 1. $QQ^TAX = AX$ (QQ^T is **orthogonal projector** onto span(AX)). Hence $(I_m - QQ^T)AX = 0$, so $A - \hat{A} = (I_m - QQ^T)A(I_n - XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.
- 2. Set $M^T=(V^TX)^\dagger V^T$ where $V=[v_1,\ldots,v_{\hat{r}}]\in\mathbb{R}^{n\times\hat{r}}$ top sing vecs of A ($\hat{r}\leq r$). $=\mathbb{C}\cup\cup_{i}\mathbb{C}$ 3. $VV^T(I-XM^T)=VV^T(I-X(V^TX)^\dagger V^T)=0$ if V^TX full row-rank (generic assumption), so $A - \hat{A} = (I_m - QQ^T)A(I - VV^T)(I_n - XM^T)$.
- 4. Taking norms, $||A \hat{A}||_2 = ||(I_m QQ^T)A(I VV^T)(I_n XM^T)||_2 = ||A \hat{A}||_2 = ||A \hat{A}|$ $||(I_m - QQ^T)U_2\Sigma_2V_2^T(I_n - XM^T)||_2$ where $[V, V_2]$ is orthogonal, so $||A - \hat{A}||_{2} \le ||\Sigma_{2}||_{2}||(I_{n} - XM^{T})||_{2} = ||\Sigma_{2}||_{2} ||XM^{T}||_{2}$ $(\chi h^{\tau})^2 = \chi h^{\tau}$ optimal rank- \hat{r}

To see why $||XM^T||_2 = O(1)$ (with high probability), we need random matrix theory

Tool from RMT: Rectangular random matrices are well conditioned

Singular of random matrix $X \in \mathbb{R}^{m \times n}$ $(m \ge n)$ with iid X_{ij} (mean 0, variance 1) follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)

Key fact in many breakthroughs in computational maths!

- Randomised SVD, Blendenpik (randomised least-squares)
- (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix concentration inequalities [Tropp 11], Function approx. by least-squares [Cohen-Davenport-Leviatan 13]

$$||XM^T||_2 = O(1)$$

Recall we've shown for $M^T = (V^TX)^\dagger V^T_{\ \ \ } X \in \mathbb{R}^{n \times r}$

$$\|A - \hat{A}\|_2 \le \|\Sigma_2\|_2 \|(I_n - XM^T)\|_2 = \underbrace{\|\Sigma_2\|_2}_{\text{optimal rank-}\hat{r}} \|XM^T\|_2$$

Now $||XM^T||_2 = ||X(V^TX)^{\dagger}V^T||_2 = ||X(V^TX)^{\dagger}||_2 \le ||X||_2 ||(V^TX)^{\dagger}||_2$.

Assume X is random Gaussian $X_{ij} \sim \mathcal{N}(0,1)$. Then

- $V^T X$ is a Gaussian matrix (orthogonal×Gaussian=Gaussian; exercise), hence $\|(V^T X)^\dagger\| = 1/\sigma_{\min}(V^T X) \lesssim 1/(\sqrt{r}-\sqrt{\hat{r}})$ by M-P
- $\|X\|_2 \lesssim \sqrt{m} + \sqrt{r}$ by M-P

Together we get $||XM^T||_2 \lesssim \frac{\sqrt{m} + \sqrt{r}}{\sqrt{r} - \sqrt{\hat{r}}} = "O(1)"$

When X non-Gaussian random matrix, perform similarly, harder to analyze $\bigwedge X$ can be cheaper.

Precise analysis for HMT (nonexaminable)

Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any
$$\hat{r} < r$$
, $\mathbb{E} \| E_{\text{HMT}} \|_F \le \sqrt{\mathbb{E} \| E_{\text{HMT}} \|_F^2} = \sqrt{1 + \frac{r}{r - \hat{r} - 1}} \| A - A_{\hat{r}} \|_F$.

PROOF. First ineq: Cauchy-Schwarz. $||E_{\rm HMT}||_F^2$ is

$$||A(I - VV^T)(I - \mathcal{P}_{X,V})||_F^2 = ||A(I - VV^T)||_F^2 + ||A(I - VV^T)\mathcal{P}_{X,V}||_F^2$$

= $||\Sigma_2||_F^2 + ||\Sigma_2\mathcal{P}_{X,V}||_F^2 = ||\Sigma_2||_F^2 + ||\Sigma_2(V_\perp^T X)(V^T X)^\dagger V^T||_F^2$.

Now if X is Gaussian then $V_\perp^T X \in \mathbb{R}^{(n-\hat{r}) \times r}$ and $V^T X \in \mathbb{R}^{\hat{r} \times r}$ are independent Gaussian. Hence by [HMT Prop. 10.1] $\mathbb{E} \|\Sigma_2(V_\perp^T X)(V^T X)^\dagger\|_F^2 = \frac{r}{r-\hat{r}-1} \|\Sigma_2\|_F^2$, so

$$\mathbb{E}||E_{\text{HMT}}||_F^2 = \left(1 + \frac{r}{r - \hat{r} - 1}\right) ||\Sigma_2||_F^2.$$

Generalized Nyström

$$X \in \mathbb{R}^{n imes r}$$
 as before; set $Y \in \mathbb{R}^{n imes (r+\ell)}$, and

[N. arXiv 2020]

$$\hat{A} = (AX(Y^T A X)^{\dagger} Y^T) A = \mathcal{P}_{AX,Y} A$$

Then
$$A - \hat{A} = (I - \mathcal{P}_{AX,Y})A = (I - \mathcal{P}_{AX,Y})A(I - XM^T)$$
; choose M s.t. $XM^T = X(V^TX)^{\dagger}V^T = \mathcal{P}_{X,V}$. Then $\mathcal{P}_{AX,Y}, \mathcal{P}_{X,V}$ projections, and

$$||A - \hat{A}|| = ||(I - \mathcal{P}_{AX,Y})A(I - \mathcal{P}_{X,V})||$$

$$\leq ||(I - \mathcal{P}_{AX,Y})A(I - VV^{T})(I - \mathcal{P}_{X,V})||$$

$$\leq ||A(I - VV^{T})(I - \mathcal{P}_{X,V})|| + ||\mathcal{P}_{AX,Y}A(I - VV^{T})(I - \mathcal{P}_{X,V})||.$$

- Note $||A(I-VV^T)(I-\mathcal{P}_{X,V})||$ exact same as HMT error
- ightharpoonup Extra term $\|\mathcal{P}_{AX,Y}\|_2 = O(1)$ as before if c > 1 in $Y \in \mathbb{R}^{m \times cr}$
- ▶ Overall, about $(1 + \|\mathcal{P}_{AX,Y}\|_2) \approx (1 + \frac{\sqrt{n} + \sqrt{r+\ell}}{\sqrt{r+\ell} \sqrt{r}})$ times bigger expected error than HMT, still near-optimal and much faster $O(mn\log n + r^3)$