Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

• Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):

- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning

Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

• Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):

- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning
- Randomised algorithms
 - Output differs at every run
 - ▶ Ideally succeed with enormous probability, e.g. $1 \exp(-cn)$
 - Often by far the fastest&only feasible approach
 - Not for all problems—active field of research

We'll cover two NLA topics where randomisation very successful: **low-rank** approximation (randomised SVD), and overdetermined least-squares problems

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^T U = V^T V = I_n$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

SVD proof: Take Gram matrix $A^T A$ and its eigendecomposition $A^T A = V \Lambda V^T$. Λ is nonnegative, and $(AV)^T (AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

SVD useful for

- Finding column space, row space, null space, rank, ...
- Matrix analysis, polar decomposition, ...
- Low-rank approximation

(Most) important result in Numerical Linear Algebra Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, find low-rank (rank r) approximation

• Optimal solution
$$A_r = U_r \Sigma_r V_r^T$$
 via truncated SVD
 $U_r = U(:, 1:r), \Sigma_r = \Sigma(1:r, 1:r), V_r = V(:, 1:r)$, giving

$$||A - A_r|| = ||\mathsf{diag}(\sigma_{r+1}, \dots, \sigma_n)|$$

in any unitarily invariant norm [Horn-Johnson 1985]

• But that costs $O(mn^2)$ (bidiagonalisation+QR); look for cheaper approximation

Randomised SVD by HMT

[Halko-Martinsson-Tropp, SIAM Review 2011]

- 1. Form a random matrix $X \in \mathbb{R}^{n \times r}$, usually $r \ll n$.
- 2. Compute AX.

3. QR factorisation
$$AX = QR$$
.
4. $A \approx Q = Q^T A = (QU_0)\Sigma_0 V_0^T$ is rank-*r* approximation.

 \blacktriangleright O(mnr) cost for dense A

▶ Near-optimal approximation guarantee: for any $\hat{r} < r$,

$$\mathbb{E} \|A - \hat{A}\|_F \le \left(1 + \frac{r}{r - \hat{r} - 1}\right) \|A - A_{\hat{r}}\|_F$$

where $A_{\hat{r}}$ is the rank \hat{r} -truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why $\mathbb{E}\|A-\hat{A}\|=O(1)\|A-A_{\hat{r}}\|$

Pseudoinverse and projectors

Given $M \in \mathbb{R}^{m \times n}$ with economical SVD $M = U_r \Sigma_r V_r^T$ $(U_r \in \mathbb{R}^{m \times r}, \Sigma_r \in \mathbb{R}^{r \times r}, V_r \in \mathbb{R}^{n \times r}$ where $r = \operatorname{rank}(M)$ so that $\Sigma_r \succ 0$), the **pseudoinverse** M^{\dagger} is

$$M^{\dagger} = V_r \Sigma_r^{-1} U_r^T \in \mathbb{R}^{n \times m}$$

satisfies MM[†]M = M, M[†]MM[†] = M[†], AA[†] = (AA[†])^T, A[†]A = (A[†]A)^T (which are often taken to be the definition—above is much simpler IMO)
 M[†] = M^{−1} if M nonsingular

A square matrix $P \in \mathbb{R}^{n \times n}$ is called a **projector** if $P^2 = P$

- \blacktriangleright P diagonalisable and all eigenvalues 1 or 0
- ▶ $||P||_2 \ge 1$ and $||P||_2 = 1$ iff $P = P^T$; in this case P is called orthogonal projector
- ▶ I P is another projector, and unless P = 0 or P = I, $||I P||_2 = ||P||_2$: Schur form $QPQ^* = \begin{bmatrix} I & B \\ 0 & 0 \end{bmatrix}$, $Q(I - P)Q^* = \begin{bmatrix} 0 & -B \\ 0 & I \end{bmatrix}$; see [Szyld 2006]

HMT approximant: analysis (down from 70 pages!) $\hat{A} = QQ^T A$, where AX = QR. Goal: $||A - \hat{A}|| = ||(I_m - QQ^T)A|| = O(||A - A_{\hat{r}}||)$.

- 1. $QQ^T AX = AX$ (QQ^T is orthogonal projector onto span(AX)). Hence $(I_m QQ^T)AX = 0$, so $A \hat{A} = (I_m QQ^T)A(I_n XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.
- 2. Set $M^T = (V^T X)^{\dagger} V^T$ where $V = [v_1, \dots, v_{\hat{r}}] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of A ($\hat{r} \leq r$).
- 3. $VV^T(I XM^T) = VV^T(I X(V^TX)^{\dagger}V^T) = 0$ if V^TX full row-rank (generic assumption), so $A \hat{A} = (I_m QQ^T)A(I VV^T)(I_n XM^T)$.
- 4. Taking norms, $||A \hat{A}||_2 = ||(I_m QQ^T)A(I VV^T)(I_n XM^T)||_2 = ||(I_m QQ^T)U_2\Sigma_2V_2^T(I_n XM^T)||_2$ where $[V, V_2]$ is orthogonal, so

$$||A - \hat{A}||_{2} \le ||\Sigma_{2}||_{2} ||(I_{n} - XM^{T})||_{2} = \underbrace{||\Sigma_{2}||_{2}}_{\text{optimal rank-}\hat{r}} ||XM^{T}||_{2}$$

To see why $||XM^T||_2 = O(1)$ (with high probability), we need random matrix theory

Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix $X \in \mathbb{R}^{m \times n}$ $(m \ge n)$ with iid X_{ij} (mean 0, variance 1) follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)

Key fact in many breakthroughs in computational maths!

- Randomised SVD, Blendenpik (randomised least-squares)
- (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix concentration inequalities [Tropp 11], Function approx. by least-squares [Cohen-Davenport-Leviatan 13]

$||XM^{T}||_{2} = O(1)$

Recall we've shown for $M^T = (V^TX)^\dagger V^T \ X \in \mathbb{R}^{n \times r}$

$$\|A - \hat{A}\|_{2} \le \|\Sigma_{2}\|_{2} \|(I_{n} - XM^{T})\|_{2} = \underbrace{\|\Sigma_{2}\|_{2}}_{\text{optimal rank} \cdot \hat{r}} \|XM^{T}\|_{2}$$

Now $||XM^T||_2 = ||X(V^TX)^{\dagger}V^T||_2 = ||X(V^TX)^{\dagger}||_2 \le ||X||_2 ||(V^TX)^{\dagger}||_2$. Assume X is random Gaussian $X_{ij} \sim \mathcal{N}(0, 1)$. Then

► $V^T X$ is a Gaussian matrix (orthogonal×Gaussian=Gaussian; exercise), hence $\|(V^T X)^{\dagger}\| = 1/\sigma_{\min}(V^T X) \lesssim 1/(\sqrt{r} - \sqrt{\hat{r}})$ by M-P ► $\|X\|_2 \lesssim \sqrt{m} + \sqrt{r}$ by M-P Together we get $\|XM^T\|_2 \lesssim \frac{\sqrt{m} + \sqrt{r}}{\sqrt{r} - \sqrt{\hat{r}}} = "O(1)"$

When X non-Gaussian random matrix, perform similarly, harder to analyze

Precise analysis for HMT (nonexaminable)

Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any $\hat{r} < r$, $\mathbb{E} \| E_{\text{HMT}} \|_F \le \sqrt{\mathbb{E} \| E_{\text{HMT}} \|_F^2} = \sqrt{1 + \frac{r}{r - \hat{r} - 1}} \| A - A_{\hat{r}} \|_F.$

PROOF. First ineq: Cauchy-Schwarz. $\|E_{\mathrm{HMT}}\|_F^2$ is

$$\begin{aligned} \|A(I - VV^{T})(I - \mathcal{P}_{X,V})\|_{F}^{2} &= \|A(I - VV^{T})\|_{F}^{2} + \|A(I - VV^{T})\mathcal{P}_{X,V}\|_{F}^{2} \\ &= \|\Sigma_{2}\|_{F}^{2} + \|\Sigma_{2}\mathcal{P}_{X,V}\|_{F}^{2} = \|\Sigma_{2}\|_{F}^{2} + \|\Sigma_{2}(V_{\perp}^{T}X)(V^{T}X)^{\dagger}V^{T}\|_{F}^{2}. \end{aligned}$$

Now if X is Gaussian then $V_{\perp}^T X \in \mathbb{R}^{(n-\hat{r}) \times r}$ and $V^T X \in \mathbb{R}^{\hat{r} \times r}$ are independent Gaussian. Hence by [HMT Prop. 10.1] $\mathbb{E} \|\Sigma_2 (V_{\perp}^T X) (V^T X)^{\dagger}\|_F^2 = \frac{r}{r-\hat{r}-1} \|\Sigma_2\|_F^2$, so

$$\mathbb{E} \|E_{\text{HMT}}\|_{F}^{2} = \left(1 + \frac{r}{r - \hat{r} - 1}\right) \|\Sigma_{2}\|_{F}^{2}.$$

Generalized Nyström

$$X \in \mathbb{R}^{n \times r}$$
 as before; set $Y \in \mathbb{R}^{n \times (r+\ell)}$, and [N. arXiv 2020]
 $\hat{A} = (AX(Y^TAX)^{\dagger}Y^T)A = \mathcal{P}_{AX,Y}A$

Then $A - \hat{A} = (I - \mathcal{P}_{AX,Y})A = (I - \mathcal{P}_{AX,Y})A(I - XM^T)$; choose M s.t. $XM^T = X(V^TX)^{\dagger}V^T = \mathcal{P}_{X,V}$. Then $\mathcal{P}_{AX,Y}, \mathcal{P}_{X,V}$ projections, and

$$\begin{split} \|A - \hat{A}\| &= \|(I - \mathcal{P}_{AX,Y})A(I - \mathcal{P}_{X,V})\| \\ &\leq \|(I - \mathcal{P}_{AX,Y})A(I - VV^{T})(I - \mathcal{P}_{X,V})\| \\ &\leq \|A(I - VV^{T})(I - \mathcal{P}_{X,V})\| + \|\mathcal{P}_{AX,Y}A(I - VV^{T})(I - \mathcal{P}_{X,V})\|. \end{split}$$

- ▶ Note $||A(I VV^T)(I P_{X,V})||$ exact same as HMT error
- Extra term $\|\mathcal{P}_{AX,Y}\|_2 = O(1)$ as before if c > 1 in $Y \in \mathbb{R}^{m \times cr}$
- Overall, about $(1 + \|\mathcal{P}_{AX,Y}\|_2) \approx (1 + \frac{\sqrt{n} + \sqrt{r+\ell}}{\sqrt{r+\ell} \sqrt{r}})$ times bigger expected error than HMT, still near-optimal and much faster $O(mn \log n + r^3)$