Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

» Direct methods (LU for Az = b, QRalg for Az = Az or A =UXVT):

» Incredibly reliable, backward stable

» Works like magic if n < 10000

> But not beyond; cubic complexity O(n?) or O(mn?)
> lterative methods (GMRES, CG, Arnoldi, Lanczos)

» Very fast when it works (nice spectrum etc)

» Otherwise, not so much; need for preconditioning
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» Direct methods (LU for Az = b, QRalg for Az = Az or A =UXVT):

» Incredibly reliable, backward stable
» Works like magic if n < 10000
> But not beyond; cubic complexity O(n?) or O(mn?)
> lterative methods (GMRES, CG, Arnoldi, Lanczos)
» Very fast when it works (nice spectrum etc)
» Otherwise, not so much; need for preconditioning
» Randomised algorithms
» OQutput differs at every run
> |deally succeed with enormous probability, e.g. 1 — exp(—cn)
» Often by far the fastest&only feasible approach
» Not for all problems—active field of research
We'll cover two NLA topics where randomisation very successful: low-rank
approximation (randomised SVD), and overdetermined least-squares problems



SVD: the most important matrix decomposition

» Symmetric eigenvalue decomposition: A = VAVT
for symmetric A € R™*", where VIV = I,,, A = diag(\1, ..., \n).

> Singular Value Decomposition (SVD): A = UXVT
for any A € R™*" m >n. Here UTU = VTV = I, ¥ = diag(o1,...,04),
o1 2>092> >0, 2>0.

SVD proof: Take Gram matrix AT A and its eigendecomposition ATA = VAVT. A'is
nonnegative, and (AV)T(AV) is diagonal, so AV = U, for some orthonormal U.
Right-multiply V7.

SVD useful for

» Finding column space, row space, null space, rank, ...
P> Matrix analysis, polar decomposition, ...
> Low-rank approximation



(Most) important result in Numerical Linear Algebra

Given A € R™*™ (m > n), find low-rank (rank r) approximation
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» Optimal solution A, = UTE,«VTT via truncated SVD
U =U(1:7),5 =%1:r1:7),V, =V(;,1:r), giving

A = Ar|| = [|diag(ort1, - - - om)|

in any unitarily invariant norm [Horn-Johnson 1985]
» But that costs O(mn?) (bidiagonalisation+QR); look for cheaper approximation



Randomised SVD by HMT

[Halko-Martinsson-Tropp, SIAM Review 2011]

1. Form a random matrix X € R™*", usually r < n.
2. Compute AX.
3. QR factorisation AX = QR.

4. A ~ I( (QU0)XoV{{') is rank-r approximation.

v

O(mnr) cost for dense A

v

Near-optimal approximation guarantee: for any 7 < r,

E|A - A|lp < (1 P
r—7f—1

)14 45
where A; is the rank 7-truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why E||A — A|| = O(1)||A — As||



Pseudoinverse and projectors
Given M € R™*" with economical SVD M = U, %, V,T
(U e R %, € R"™" V, € R where r = rank(M) so that X, > 0), the
pseudoinverse M is
Mt =V, 57Ul e R

> satisfies MMM = M, MTMM? = MT, AAT = (AANT, ATA = (ATA)T (which
are often taken to be the definition—above is much simpler IMO)
» Mt = M~1if M nonsingular

A square matrix P € R"*" is called a projector if P? = P

» P diagonalisable and all eigenvalues 1 or 0
» ||P|l2 > 1 and ||P|l2 = 1 iff P = PT; in this case P is called orthogonal projector
» [ — P is another projector, and unless P =0 or P =1, ||[I — P|]2 = || P||2:

Schur form QPQ* = [[ B, QI — P)Q* = [ 71 see [Szyld 2006]



HMT approximant: analysis (down from 70 pages!)
A =QQTA, where AX = QR. Goal: |A — AH = |(Im, — QQTA| = O(J|A — Az]).
1. QQTAX = AX (QQT is orthogonal projector onto span(AX)). Hence
(Im —QQTYAX = 0,50 A— A = (I, - QQT)A(I,, — X M) for any M € R™ ",
2. Set MT = (VT X)IVT where V = [vy,...,v;] € R"*" top sing vecs of A (7 < r).

3.VVT(UI - XMT) =vVT(I - X(VTX)'VT) =0 if VTX full row-rank (generic
assumption), so A — A = (I, — QQTYA(I —VVT)(I, — XMT).

4. Taking norms, ||A — leg =||(Im — QQT)A(I — VVT)(In - XMT)H2 =
(I, — QQTYU25 Vi (I, — X MT)||2 where [V, V3] is orthogonal, so
|A = Al < |S2lloll(Zn — XMz = Do) I XMT|;
——

optimal rank-7

To see why | X MT||y = O(1) (with high probability), we need random matrix theory



Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix X € R™*™ (m > n) with iid X;; (mean 0, variance 1)
follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)
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Omax(X) &~ /m + /1, omin(X) = /m — /n, hence ra(X) ~ iﬁ =0(1),

Key fact in many breakthroughs in computational maths!

» Randomised SVD, Blendenpik (randomised least-squares)

> (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix
concentration inequalities [Tropp 11], Function approx. by least-squares
[Cohen-Davenport-Leviatan 13]



| XMz = O(1)
Recall we've shown for M7 = (VT X)IVT X € R**7

1A = Allz < [|IZall2l| (1o = XMT) 2= |[Zofl2 XMz
——
optimal rank-7
Now [|X M7 |ly = [ X(VTX)TVT||g = | X (VTX) 2 < [ X2l (VT X)T]2.
Assume X is random Gaussian X;; ~ N(0,1). Then

» VT X is a Gaussian matrix (orthogonal x Gaussian=Gaussian; exercise), hence
I(VIX)T| = 1/omin(VTX) < 1/(v/F — V/7) by M-P
> [|X][2 S vm+ /1 by M-P
Together we get | X M7y < ‘?Jrf 70(1)”

» When X non-Gaussian random matrix, perform similarly, harder to analyze



Precise analysis for HMT (nonexaminable)
Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any # < r, E||Eamvr|lr < \/EllBamrl|% = /1 + — 14 — As | F.

PROOF. First ineq: Cauchy-Schwarz. ||Emyrl% is

AU = VVI)I = Px )l = AT = VVD)[E + AT - VV)PxvE
= ||ZalF + [1Z2PxvllF = IZallF + [S2(VEX)(VEX) VT3

Now if X is Gaussian then VEX e R(=x7 and VT X € R™" are independent
Gaussian. Hence by [HMT Prop. 10.1] E[|S2(VEX)(VIX)T||% = —5—|2]/%, so

,
E|| Eamr |7 = (1 + r—f—l) 152/



Generalized Nystrom
X € R™ " as before; set Y € R"*("+0 and [N. arXiv 2020]

A= (AX(YTAX)'YT)A = PaxyA

Then A— A= (I —Paxy)A= (I —Paxy)AI — XMT); choose M s.t.
XMT =x(VTxX) VT = Px,v. Then Paxy,Px,v projections, and

|A— Al = |(I = Paxy)AI — Pxv)|
< (I = Paxy)AI = VVII - Pxy)|
<[ AT = VVD)YI = Pxv)| + |Paxy AT = VVT)(I = Pxy)l.

> Note ||A(I — VVT)(I — Pxy)| exact same as HMT error
» Extra term ||Pax y||2 = O(1) as before if ¢ > 1in Y € R™*°"

» Overall, about (1+ ||Pax,y|l2) = (1 + \\/fi T\J}) times bigger expected error than

HMT, still near-optimal and much faster O(mnlogn + r3)



