Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- Direct methods (LU for $A x=b$, QRalg for $A x=\lambda x$ or $A=U \Sigma V^{T}$):
- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- But not beyond; cubic complexity $O\left(n^{3}\right)$ or $O\left(m n^{2}\right)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
- Very fast when it works (nice spectrum etc)
- Otherwise, not so much; need for preconditioning

Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- Direct methods (LU for $A x=b$, QRalg for $A x=\lambda x$ or $A=U \Sigma V^{T}$):
- Incredibly reliable, backward stable
- Works like magic if $n \lesssim 10000$
- But not beyond; cubic complexity $O\left(n^{3}\right)$ or $O\left(m n^{2}\right)$
- Iterative methods (GMRES, CG, Arnoldi, Lanczos)
- Very fast when it works (nice spectrum etc)
- Otherwise, not so much; need for preconditioning
- Randomised algorithms
- Output differs at every run
- Ideally succeed with enormous probability, e.g. $1-\exp (-c n)$
- Often by far the fastest\&only feasible approach
- Not for all problems-active field of research

We'll cover two NLA topics where randomisation very successful: low-rank approximation (randomised SVD), and overdetermined least-squares problems

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- Singular Value Decomposition (SVD): $A=U \Sigma V^{T}$ for any $A \in \mathbb{R}^{m \times n}, m \geq n$. Here $U^{T} U=V^{T} V=I_{n}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$.

SVD proof: Take Gram matrix $A^{T} A$ and its eigendecomposition $A^{T} A=V \Lambda V^{T} . \Lambda$ is nonnegative, and $(A V)^{T}(A V)$ is diagonal, so $A V=U \Sigma$ for some orthonormal U. Right-multiply V^{T}.

SVD useful for

- Finding column space, row space, null space, rank, ...
- Matrix analysis, polar decomposition, ...
- Low-rank approximation

(Most) important result in Numerical Linear Algebra

Given $A \in \mathbb{R}^{m \times n}(m \geq n)$, find low-rank (rank r) approximation

- Optimal solution $A_{r}=U_{r} \Sigma_{r} V_{r}^{T}$ via truncated SVD

$$
U_{r}=U(:, 1: r), \Sigma_{r}=\Sigma(1: r, 1: r), V_{r}=V(:, 1: r), \text { giving }
$$

$$
\left\|A-A_{r}\right\|=\left\|\operatorname{diag}\left(\sigma_{r+1}, \ldots, \sigma_{n}\right)\right\|
$$

in any unitarily invariant norm [Horn-Johnson 1985]

- But that costs $O\left(m n^{2}\right)$ (bidiagonalisation+QR); look for cheaper approximation

Randomised SVD by HMT

1. Form a random matrix $X \in \mathbb{R}^{n \times r}$, usually $r \ll n$.
2. Compute $A X$.
3. QR factorisation $A X=Q R$.
4.

\square $Q^{T} A \quad\left(=\left(Q U_{0}\right) \Sigma_{0} V_{0}^{T}\right)$ is rank- r approximation.

- $O(m n r)$ cost for dense A
- Near-optimal approximation guarantee: for any $\hat{r}<r$,

$$
\mathbb{E}\|A-\hat{A}\|_{F} \leq\left(1+\frac{r}{r-\hat{r}-1}\right)\left\|A-A_{\hat{r}}\right\|_{F}
$$

where $A_{\hat{r}}$ is the rank \hat{r}-truncated SVD (expectation w.r.t. random matrix X)
Goal: understand this, or at least why $\mathbb{E}\|A-\hat{A}\|=O(1)\left\|A-A_{\hat{r}}\right\|$

Pseudoinverse and projectors

Given $M \in \mathbb{R}^{m \times n}$ with economical SVD $M=U_{r} \Sigma_{r} V_{r}^{T}$
($U_{r} \in \mathbb{R}^{m \times r}, \Sigma_{r} \in \mathbb{R}^{r \times r}, V_{r} \in \mathbb{R}^{n \times r}$ where $r=\operatorname{rank}(M)$ so that $\left.\Sigma_{r} \succ 0\right)$, the pseudoinverse M^{\dagger} is

$$
M^{\dagger}=V_{r} \Sigma_{r}^{-1} U_{r}^{T} \in \mathbb{R}^{n \times m}
$$

- satisfies $M M^{\dagger} M=M, M^{\dagger} M M^{\dagger}=M^{\dagger}, A A^{\dagger}=\left(A A^{\dagger}\right)^{T}, A^{\dagger} A=\left(A^{\dagger} A\right)^{T}$ (which are often taken to be the definition-above is much simpler IMO)
- $M^{\dagger}=M^{-1}$ if M nonsingular

A square matrix $P \in \mathbb{R}^{n \times n}$ is called a projector if $P^{2}=P$

- P diagonalisable and all eigenvalues 1 or 0
- $\|P\|_{2} \geq 1$ and $\|P\|_{2}=1$ iff $P=P^{T}$; in this case P is called orthogonal projector
- $I-P$ is another projector, and unless $P=0$ or $P=I,\|I-P\|_{2}=\|P\|_{2}$:

Schur form $Q P Q^{*}=\left[\begin{array}{cc}I & B \\ 0 & 0\end{array}\right], Q(I-P) Q^{*}=\left[\begin{array}{cc}0 & -B \\ 0 & I\end{array}\right]$;
see [Szyld 2006]

HMT approximant: analysis (down from 70 pages!)

$\hat{A}=Q Q^{T} A$, where $A X=Q R$. Goal: $\|A-\hat{A}\|=\left\|\left(I_{m}-Q Q^{T}\right) A\right\|=O\left(\left\|A-A_{\hat{r}}\right\|\right)$.

1. $Q Q^{T} A X=A X\left(Q Q^{T}\right.$ is orthogonal projector onto $\left.\operatorname{span}(A X)\right)$. Hence $\left(I_{m}-Q Q^{T}\right) A X=0$, so $A-\hat{A}=\left(I_{m}-Q Q^{T}\right) A\left(I_{n}-X M^{T}\right)$ for any $M \in \mathbb{R}^{n \times r}$.
2. Set $M^{T}=\left(V^{T} X\right)^{\dagger} V^{T}$ where $V=\left[v_{1}, \ldots, v_{\hat{r}}\right] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of $A(\hat{r} \leq r)$.
3. $V V^{T}\left(I-X M^{T}\right)=V V^{T}\left(I-X\left(V^{T} X\right)^{\dagger} V^{T}\right)=0$ if $V^{T} X$ full row-rank (generic assumption), so $A-\hat{A}=\left(I_{m}-Q Q^{T}\right) A\left(I-V V^{T}\right)\left(I_{n}-X M^{T}\right)$.
4. Taking norms, $\|A-\hat{A}\|_{2}=\left\|\left(I_{m}-Q Q^{T}\right) A\left(I-V V^{T}\right)\left(I_{n}-X M^{T}\right)\right\|_{2}=$ $\left\|\left(I_{m}-Q Q^{T}\right) U_{2} \Sigma_{2} V_{2}^{T}\left(I_{n}-X M^{T}\right)\right\|_{2}$ where $\left[V, V_{2}\right]$ is orthogonal, so

$$
\|A-\hat{A}\|_{2} \leq\left\|\Sigma_{2}\right\|_{2}\left\|\left(I_{n}-X M^{T}\right)\right\|_{2}=\underbrace{\left\|\Sigma_{2}\right\|_{2}}_{\text {optimal rank- } \hat{r}}\left\|X M^{T}\right\|_{2}
$$

To see why $\left\|X M^{T}\right\|_{2}=O(1)$ (with high probability), we need random matrix theory

Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix $X \in \mathbb{R}^{m \times n}(m \geq n)$ with iid $X_{i j}$ (mean 0 , variance 1) follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)

density $\sim \frac{1}{x} \sqrt{\left(\left(1+\sqrt{\frac{m}{n}}\right)-x\right)\left(x-\left(1-\sqrt{\frac{m}{n}}\right)\right)}$, support $[\sqrt{m}-\sqrt{n}, \sqrt{m}+\sqrt{n}]$
$\sigma_{\max }(X) \approx \sqrt{m}+\sqrt{n}, \sigma_{\min }(X) \approx \sqrt{m}-\sqrt{n}$, hence $\kappa_{2}(X) \approx \frac{1+\sqrt{m / n}}{1-\sqrt{m / n}}=O(1)$,
Key fact in many breakthroughs in computational maths!

- Randomised SVD, Blendenpik (randomised least-squares)
- (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix concentration inequalities [Tropp 11], Function approx. by least-squares [Cohen-Davenport-Leviatan 13]

$\left\|X M^{T}\right\|_{2}=O(1)$

Recall we've shown for $M^{T}=\left(V^{T} X\right)^{\dagger} V^{T} X \in \mathbb{R}^{n \times r}$

$$
\|A-\hat{A}\|_{2} \leq\left\|\Sigma_{2}\right\|_{2}\left\|\left(I_{n}-X M^{T}\right)\right\|_{2}=\underbrace{\left\|\Sigma_{2}\right\|_{2}}_{\text {optimal rank- } \hat{r}}\left\|X M^{T}\right\|_{2}
$$

Now $\left\|X M^{T}\right\|_{2}=\left\|X\left(V^{T} X\right)^{\dagger} V^{T}\right\|_{2}=\left\|X\left(V^{T} X\right)^{\dagger}\right\|_{2} \leq\|X\|_{2}\left\|\left(V^{T} X\right)^{\dagger}\right\|_{2}$.
Assume X is random Gaussian $X_{i j} \sim \mathcal{N}(0,1)$. Then

- $V^{T} X$ is a Gaussian matrix (orthogonal \times Gaussian=Gaussian; exercise), hence $\left\|\left(V^{T} X\right)^{\dagger}\right\|=1 / \sigma_{\min }\left(V^{T} X\right) \lesssim 1 /(\sqrt{r}-\sqrt{\hat{r}})$ by M-P
- $\|X\|_{2} \lesssim \sqrt{m}+\sqrt{r}$ by M-P

Together we get $\left\|X M^{T}\right\|_{2} \lesssim \frac{\sqrt{m}+\sqrt{r}}{\sqrt{r}-\sqrt{r}}=" O(1) "$

- When X non-Gaussian random matrix, perform similarly, harder to analyze

Precise analysis for HMT (nonexaminable)

Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any $\hat{r}<r, \mathbb{E}\left\|E_{\text {HMT }}\right\|_{F} \leq \sqrt{\mathbb{E}\left\|E_{\text {HMT }}\right\|_{F}^{2}}=\sqrt{1+\frac{r}{r-\hat{r}-1}}\left\|A-A_{\hat{r}}\right\|_{F}$. proof. First ineq: Cauchy-Schwarz. $\left\|E_{\text {HMT }}\right\|_{F}^{2}$ is

$$
\begin{aligned}
& \left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|_{F}^{2}=\left\|A\left(I-V V^{T}\right)\right\|_{F}^{2}+\left\|A\left(I-V V^{T}\right) \mathcal{P}_{X, V}\right\|_{F}^{2} \\
& =\left\|\Sigma_{2}\right\|_{F}^{2}+\left\|\Sigma_{2} \mathcal{P}_{X, V}\right\|_{F}^{2}=\left\|\Sigma_{2}\right\|_{F}^{2}+\left\|\Sigma_{2}\left(V_{\perp}^{T} X\right)\left(V^{T} X\right)^{\dagger} V^{T}\right\|_{F}^{2} .
\end{aligned}
$$

Now if X is Gaussian then $V_{\perp}^{T} X \in \mathbb{R}^{(n-\hat{r}) \times r}$ and $V^{T} X \in \mathbb{R}^{\hat{\gamma} \times r}$ are independent Gaussian. Hence by [HMT Prop. 10.1] $\mathbb{E}\left\|\Sigma_{2}\left(V_{\perp}^{T} X\right)\left(V^{T} X\right)^{\dagger}\right\|_{F}^{2}=\frac{r}{r-\hat{r}-1}\left\|\Sigma_{2}\right\|_{F}^{2}$, so

$$
\mathbb{E}\left\|E_{\mathrm{HMT}}\right\|_{F}^{2}=\left(1+\frac{r}{r-\hat{r}-1}\right)\left\|\Sigma_{2}\right\|_{F}^{2} .
$$

Generalized Nyström

$X \in \mathbb{R}^{n \times r}$ as before; set $Y \in \mathbb{R}^{n \times(r+\ell)}$, and \quad [N . arXiv 2020]

$$
\hat{A}=\left(A X\left(Y^{T} A X\right)^{\dagger} Y^{T}\right) A=\mathcal{P}_{A X, Y} A
$$

Then $A-\hat{A}=\left(I-\mathcal{P}_{A X, Y}\right) A=\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-X M^{T}\right)$; choose M s.t. $X M^{T}=X\left(V^{T} X\right)^{\dagger} V^{T}=\mathcal{P}_{X, V}$. Then $\mathcal{P}_{A X, Y}, \mathcal{P}_{X, V}$ projections, and

$$
\begin{aligned}
\|A-\hat{A}\| & =\left\|\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-\mathcal{P}_{X, V}\right)\right\| \\
& \leq\left\|\left(I-\mathcal{P}_{A X, Y}\right) A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\| \\
& \leq\left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|+\left\|\mathcal{P}_{A X, Y} A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\| .
\end{aligned}
$$

- Note $\left\|A\left(I-V V^{T}\right)\left(I-\mathcal{P}_{X, V}\right)\right\|$ exact same as HMT error
- Extra term $\left\|\mathcal{P}_{A X, Y}\right\|_{2}=O(1)$ as before if $c>1$ in $Y \in \mathbb{R}^{m \times c r}$
- Overall, about $\left(1+\left\|\mathcal{P}_{A X, Y}\right\|_{2}\right) \approx\left(1+\frac{\sqrt{n}+\sqrt{r+\ell}}{\sqrt{r+\ell}-\sqrt{r}}\right)$ times bigger expected error than HMT, still near-optimal and much faster $O\left(m n \log n+r^{3}\right)$

