
Randomised algorithms in NLA
So far, all algorithms have been deterministic (always same output)
I Direct methods (LU for Ax = b, QRalg for Ax = λx or A = UΣV T ):

I Incredibly reliable, backward stable
I Works like magic if n . 10000
I But not beyond; cubic complexity O(n3) or O(mn2)

I Iterative methods (GMRES, CG, Arnoldi, Lanczos)
I Very fast when it works (nice spectrum etc)
I Otherwise, not so much; need for preconditioning

I Randomised algorithms
I Output differs at every run
I Ideally succeed with enormous probability, e.g. 1− exp(−cn)
I Often by far the fastest&only feasible approach
I Not for all problems—active field of research

We’ll cover two NLA topics where randomisation very successful: low-rank
approximation (randomised SVD), and overdetermined least-squares problems
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SVD: the most important matrix decomposition
I Symmetric eigenvalue decomposition: A = V ΛV T

for symmetric A ∈ Rn×n, where V TV = In, Λ = diag(λ1, . . . , λn).

I Singular Value Decomposition (SVD): A = UΣV T

for any A ∈ Rm×n, m ≥ n. Here UTU = V TV = In, Σ = diag(σ1, . . . , σn),
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

SVD proof: Take Gram matrix ATA and its eigendecomposition ATA = V ΛV T . Λ is
nonnegative, and (AV )T (AV ) is diagonal, so AV = UΣ for some orthonormal U .
Right-multiply V T .

SVD useful for
I Finding column space, row space, null space, rank, ...
I Matrix analysis, polar decomposition, ...
I Low-rank approximation



(Most) important result in Numerical Linear Algebra
Given A ∈ Rm×n (m ≥ n), find low-rank (rank r) approximation

A ≈ Û Σ̂ V̂ T , Σ̂ ∈ Rr×r

I Optimal solution Ar = UrΣrV
T

r via truncated SVD
Ur = U(:, 1 : r),Σr = Σ(1 : r, 1 : r), Vr = V (:, 1 : r), giving

‖A−Ar‖ = ‖diag(σr+1, . . . , σn)‖

in any unitarily invariant norm [Horn-Johnson 1985]
I But that costs O(mn2) (bidiagonalisation+QR); look for cheaper approximation



Randomised SVD by HMT
[Halko-Martinsson-Tropp, SIAM Review 2011]

1. Form a random matrix X ∈ Rn×r, usually r � n.
2. Compute AX.
3. QR factorisation AX = QR.

4. A ≈ Q QTA (= (QU0)Σ0V
T

0 ) is rank-r approximation.

I O(mnr) cost for dense A
I Near-optimal approximation guarantee: for any r̂ < r,

E‖A− Â‖F ≤
(

1 + r

r − r̂ − 1

)
‖A−Ar̂‖F

where Ar̂ is the rank r̂-truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why E‖A− Â‖ = O(1)‖A−Ar̂‖



Pseudoinverse and projectors
Given M ∈ Rm×n with economical SVD M = UrΣrV

T
r

(Ur ∈ Rm×r,Σr ∈ Rr×r, Vr ∈ Rn×r where r = rank(M) so that Σr � 0), the
pseudoinverse M † is

M † = VrΣ−1
r UT

r ∈ Rn×m

I satisfies MM †M = M , M †MM † = M †, AA† = (AA†)T , A†A = (A†A)T (which
are often taken to be the definition—above is much simpler IMO)

I M † = M−1 if M nonsingular

A square matrix P ∈ Rn×n is called a projector if P 2 = P

I P diagonalisable and all eigenvalues 1 or 0
I ‖P‖2 ≥ 1 and ‖P‖2 = 1 iff P = P T ; in this case P is called orthogonal projector
I I − P is another projector, and unless P = 0 or P = I, ‖I − P‖2 = ‖P‖2:

Schur form QPQ∗ =
[

I B
0 0

]
, Q(I − P )Q∗ =

[ 0 −B
0 I

]
; see [Szyld 2006]



HMT approximant: analysis (down from 70 pages!)
Â = QQTA, where AX = QR. Goal: ‖A− Â‖ = ‖(Im −QQT )A‖ = O(‖A−Ar̂‖).

1. QQTAX = AX (QQT is orthogonal projector onto span(AX)). Hence
(Im−QQT )AX = 0, so A− Â = (Im−QQT )A(In−XMT ) for any M ∈ Rn×r.

2. Set MT = (V TX)†V T where V = [v1, . . . , vr̂] ∈ Rn×r̂ top sing vecs of A (r̂ ≤ r).

3. V V T (I −XMT ) = V V T (I −X(V TX)†V T ) = 0 if V TX full row-rank (generic
assumption), so A− Â = (Im −QQT )A(I − V V T )(In −XMT ).

4. Taking norms, ‖A− Â‖2 = ‖(Im −QQT )A(I − V V T )(In −XMT )‖2 =
‖(Im −QQT )U2Σ2V

T
2 (In −XMT )‖2 where [V, V2] is orthogonal, so

‖A− Â‖2 ≤ ‖Σ2‖2‖(In −XMT )‖2 = ‖Σ2‖2︸ ︷︷ ︸
optimal rank-r̂

‖XMT ‖2

To see why ‖XMT ‖2 = O(1) (with high probability), we need random matrix theory



Tool from RMT: Rectangular random matrices are well conditioned
Singvals of random matrix X ∈ Rm×n (m ≥ n) with iid Xij (mean 0, variance 1)
follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)
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Key fact in many breakthroughs in computational maths!
I Randomised SVD, Blendenpik (randomised least-squares)
I (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix

concentration inequalities [Tropp 11], Function approx. by least-squares
[Cohen-Davenport-Leviatan 13]



‖XMT‖2 = O(1)
Recall we’ve shown for MT = (V TX)†V T X ∈ Rn×r

‖A− Â‖2 ≤ ‖Σ2‖2‖(In −XMT )‖2 = ‖Σ2‖2︸ ︷︷ ︸
optimal rank-r̂

‖XMT ‖2

Now ‖XMT ‖2 = ‖X(V TX)†V T ‖2 = ‖X(V TX)†‖2 ≤ ‖X‖2‖(V TX)†‖2.
Assume X is random Gaussian Xij ∼ N (0, 1). Then
I V TX is a Gaussian matrix (orthogonal×Gaussian=Gaussian; exercise), hence
‖(V TX)†‖ = 1/σmin(V TX) . 1/(

√
r −
√
r̂) by M-P

I ‖X‖2 .
√
m+

√
r by M-P

Together we get ‖XMT ‖2 .
√

m+
√

r√
r−
√

r̂
= ”O(1)”

I When X non-Gaussian random matrix, perform similarly, harder to analyze



Precise analysis for HMT (nonexaminable)
Theorem (Reproduces HMT 2011 Thm.10.5)

If X Gaussian, for any r̂ < r, E‖EHMT‖F ≤
√
E‖EHMT‖2F =

√
1 + r

r−r̂−1‖A−Ar̂‖F .

proof. First ineq: Cauchy-Schwarz. ‖EHMT‖2F is

‖A(I − V V T )(I − PX,V )‖2
F = ‖A(I − V V T )‖2

F + ‖A(I − V V T )PX,V ‖2
F

= ‖Σ2‖2
F + ‖Σ2PX,V ‖2

F = ‖Σ2‖2
F + ‖Σ2(V T

⊥X)(V TX)†V T ‖2
F .

Now if X is Gaussian then V T
⊥X ∈ R(n−r̂)×r and V TX ∈ Rr̂×r are independent

Gaussian. Hence by [HMT Prop. 10.1] E‖Σ2(V T
⊥X)(V TX)†‖2F = r

r−r̂−1‖Σ2‖2F , so

E‖EHMT‖2F =
(

1 + r

r − r̂ − 1

)
‖Σ2‖2F .



Generalized Nyström
X ∈ Rn×r as before; set Y ∈ Rn×(r+`), and [N. arXiv 2020]

Â = (AX(Y TAX)†Y T )A = PAX,Y A

Then A− Â = (I − PAX,Y )A = (I − PAX,Y )A(I −XMT ); choose M s.t.
XMT = X(V TX)†V T = PX,V . Then PAX,Y ,PX,V projections, and

‖A− Â‖ = ‖(I − PAX,Y )A(I − PX,V )‖
≤ ‖(I − PAX,Y )A(I − V V T )(I − PX,V )‖
≤ ‖A(I − V V T )(I − PX,V )‖+ ‖PAX,Y A(I − V V T )(I − PX,V )‖.

I Note ‖A(I − V V T )(I − PX,V )‖ exact same as HMT error
I Extra term ‖PAX,Y ‖2 = O(1) as before if c > 1 in Y ∈ Rm×cr

I Overall, about (1 + ‖PAX,Y ‖2) ≈ (1 +
√

n+
√

r+`√
r+`−

√
r
) times bigger expected error than

HMT, still near-optimal and much faster O(mn logn+ r3)


