
Numerical Linear Algebra

Sheet 4 — MT20

Krylov methods and randomised algorithms

This sheet is due 9am two weekdays before the class (Thursday if class is on Monday).

1. If A ∈ IRn×n is nonsingular, show that GMRES breaks down at the `th iteration (i.e.

h`+1,` = 0) if and only if x` = x (i.e. the solution of the linear system has been found).

2. (a) Let QkRk be a QR factorization of Ĥk where Qk = J1J2 . . . Jk with Jj being a

Givens rotation matrix for each j. If Ĥk+1 is computed from Ĥk by appending the

one further column computed by the next step of the Arnoldi algorithm, show that

only one further Givens rotation Jk+1 gives the QR factorization of Ĥk+1.

(b) If s = sin θ in the Givens rotation in Jk+1, show that

‖rk‖2 = |s|‖rk−1‖2.

Hence for the sequence of succesive residuals rk, k = 0, 1, 2, . . . computed by the

GMRES method, {‖rk‖2, k = 0, 1, 2, . . .} must reduce monotonically. Are there

any circumstances in which the convergence is not strictly monotonic?

3. Show how GMRES will converge on the linear system Ax = b with x0 = 0 when

A =


0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 , b =


1

0

0

0

0

 .

Hand calculation (it is simple in this example to work out what the residual vectors

must be!) is best here if you want to learn something!
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4. For A � 0 ∈ Rn×n, b ∈ Rn and a chosen x0, let r0 = b − Ax0 and p0 = r0 and for

k = 0, 1, . . .

αk = 〈pk, rk〉/〈pk, Apk〉

(1) xk+1 = xk + αkpk

(2) rk+1 = b− Axk+1

βk = −〈pk, Ark+1〉/〈pk, Apk〉

(3) pk+1 = rk+1 + βkpk

where 〈·, ·〉 is the standard inner product 〈x, y〉 = xTy. Show that (2) and (1) imply

rk+1 = rk − αkApk.

Prove that the definition of αk implies 〈rk+1, pj〉 = 0 for j = k and that the definition

of βk implies 〈pk+1, Apj〉 = 0 for j = k. Prove also that 〈rk+1, rj〉 = 0 for j = k.

Now by employing induction in k for k = 1, 2, . . ., prove these three assertions for

j = 1, 2, . . . , k − 1. (The inductive assumption will be that

〈rk, pj〉 = 0, 〈rk, rj〉 = 0, 〈pk, Apj〉 = 0, j = 0, 1, . . . , k − 1

and you may wish to tackle the assertions in this order.)

Note that these show xk satisfies the CG condition QT (Axk − b) where span(Q) =

Kk(A, b).

5. Let S ∈ Rn×n be a symmetric matrix with ‖S‖2 ≤ 0.5, and A = I + S.

(a) Show that A is symmetric positive definite.

(b) Consider a linear system Ax = b for b ∈ Rn solved by CG. Give an upper bound for

the number of CG iterations k required to get ε = 10−15 accuracy in the A-norm

of the error ‖x− x(k)‖A/‖x‖A ≤ 10−15.

(c) Use MATLAB or Python to verify the above claim in experiments.
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6. (Randomised SVD.) Let A ∈ Rm×n, and X ∈ Rn×r(r < n). Let AX = QR be the thin

QR factorisation, and let Â = QQTA be a rank-r approximant to A.

(a) Show that A− Â = (Im−QQT )A = (Im−QQT )A(In−XMT ) for any M ∈ Rn×r.

(b) Show that choosing MT = (V TX)†V T where V ∈ Rn×r is orthonormal, XMT =

PX,V becomes a projector P2
X,V = PX,V . Show further that if V TX is nonsingular,

then A(I − PX,V ) = A(I − V V T )(I − PX,V ).

(Note: The pseudoinverse W † is defined via the (economical) SVD W = UWΣWV
T
W

(where ΣW � 0) by W † = VWΣ−1W UT
W . )

(c) By choosing V appropriately, show that ‖A − Â‖2 ≤ ‖Σ2‖2‖I − PX,V ‖2 where

Σ2 = diag(σr+1(A), σr+2(A), . . . , σn(A)).

(Note: we further have ‖I −PX,V ‖2 = ‖PX,V ‖2, which holds for any projector that

is not 0 or I. ‖PX,V ‖2 = ”O(1)” can be shown with high probability when X is a

Gaussian random matrix with i.i.d. entries Xij ∼ N(0, 1). The above bound then

means Â is a near-optimal rank-r approximation).

7. (Randomised least-squares.) Consider a least-squares problem minx ‖Ax − b‖2, where

A ∈ Rm×n(m > n) has full column rank.

(a) Let A = QR be the thin QR factorisation. Show that κ2(AR
−1) = 1.

(b) Let X ∈ Rm×ñ where ñ ≥ n. Show that if XTQ is well-conditioned κ2(X
TQ) =

O(1), then with the QR factorisation XTA = Q1R1, AR
−1
1 is well-conditioned.

(c) Hence show that once suchR1 becomes available, the least-squares problem minx ‖Ax−
b‖2 can be solved efficiently in O(mn) operations (or O(mn log 1

ε
) operations for ε

accuracy).

8. Explore question 6 with experiments: take A to be a matrix with singualr values geo-

metrically distributed between 1 and 10−20. Take X ∈ Rn×r(r < n) to be a Gaussian

random matrix (X=randn(m,r) in MATLAB), and form Â = QQTA, where AX = QR.

Then examine the error ‖A− Â‖2 as you vary r and do an r-vs.-error plot, comparing

the error with the optimal value σr+1(A) (by the truncated SVD). Verify that error is a

modest constant multiple of optimal.
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9. (Optional) Use matlab ([x,flag,relres,iter,resvec]=gmres(A,b,[],1.e-6,size(A,1)))

with suitably chosen matrices A and b as below to investigate the behaviour of GMRES.

Note in the form above matlab will use unrestarted GMRES, flag=0 will indicate suc-

cessful convergence (the relative residual norm - relres - less than 10−6 in less than

dimension(A) =size(A,1) iterations), iter is the number of restarts (should be 1 with

no restarting) and iterations taken and resvec is the vector of residual norms at each

iteration (hence semilogy(resvec) will plot the convergence curve). See help gmres

if you want to read more or change any of the defaults.

(i) A=randn(n); b=ones(n,1); for n=7,47,... as you choose (and have patience for!

(note ctrl C will interrupt a computation). These are dense matrices!

(ii) A=sprandn(100,100,0.1); b=ones(100,1);. This is a sparse 100 × 100 matrix

with approximately 10 non-zero entries per row (ie. 0.1 of the 10,000 entries non-zero).

(iii) A=sprandn(100,100,0.1) +2*eye(100,100); b=ones(100,1);

(iv) A=sprandn(100,100,0.1) +4*eye(100,100); b=ones(100,1);

(v) a diagonalisable matrix that has few distinct eigenvalues

eg. X=randn(9,9); A=X*diag([1,1,-4,3,3,-4,-4,-4,3])/X

(note /X is an more efficient way of computing *inv(X) and that it is possible that an

X generated with random entries is singular, but is rarely so!)

(vi) any matrix
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