GMRES for Ax = b

Idea (very simple!): minimise residual in Krylov subspace:

[Saad-Schulz 86]

$$x = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2$$

GMRES for Ax = b

Idea (very simple!): minimise residual in Krylov subspace:

[Saad-Schulz 86]

$$x = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2$$

Algorithm: Given $AQ_k = Q_{k+1}\tilde{H}_k$ and writing $x = Q_ky$, rewrite as

$$\min_{y} \|AQ_{k}y - b\|_{2} = \min_{y} \|Q_{k+1}\tilde{H}_{k}y - b\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \begin{bmatrix} Q_{k}^{T} \\ Q_{k,\perp}^{T} \end{bmatrix} b \right\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \in \mathbb{R}^{n}$$

(where $[Q_k, Q_{k,\perp}]$ orthogonal; same trick as in least-squares)

- Minimised when $\|\tilde{H}_k y \tilde{Q}_k^T b\| \to \min$; Hessenberg least-squares problem
- ▶ Solve via QR (k Givens rotations)+triangular solve, $O(k^2)$ in addition to Arnoldi

GMRES convergence: polynomial approximation

Recall that $x \in \mathcal{K}_k(A,b) \Rightarrow x = p_{k-1}(A)b$. Hence GMRES solution is

$$\min_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2 = \min_{p_{k-1} \in \mathcal{P}_{k-1}} ||Ap_{k-1}(A)b - b||_2$$

$$= \min_{\tilde{p} \in \mathcal{P}_k, \tilde{p}(0) = 0} ||(\tilde{p}(A) - I)b||_2$$

$$= \min_{p \in \mathcal{P}_k, p(0) = 1} ||p(A)b||_2$$

If A diagonalizable $A = X\Lambda X^{-1}$,

$$||p(A)||_2 = ||Xp(\Lambda)X^{-1}||_2 \le ||X||_2 ||X^{-1}||_2 ||p(\Lambda)||_2$$
$$= \kappa_2(X) \max_{z \in \lambda(A)} |p(z)|$$

Interpretation: find polynomial s.t. p(0) = 1 and $|p(\lambda_i)|$ small for all i

GMRES example

G: Gaussian random matrix ($G_{ij} \sim N(0,1)$, i.i.d.) G/\sqrt{n} : eigvals in unit disk

aussian random matrix (
$$G_{i}$$
) $A = 2I + G/\sqrt{n}$, $p(z) = 2^{-k}(z-2)^k$ $\frac{1}{\log(A)}$ $\frac{1}{\log($

GMRES iterations

Restarted GMRES

For k iterations, GMRES costs k matrix multiplications+ $O(nk^2)$ for orthogonalization \rightarrow Arnoldi eventually becomes expensive.

Practical solution: restart by solving 'iterative refinement':

- 1. Stop GMRES after $k_{
 m max}$ (prescribed) steps to get approx. solution \hat{x}_1
- 2. Solve $A\tilde{x} = b A\hat{x}_1$ via GMRES
- 3. Obtain solution $\hat{x}_1 + \tilde{x}$

Sometimes multiple restarts needed

When does GMRES converge fast?

Recall GMRES solution satisfies (assuming A diagonalisable+nonsingular)

$$\min_{x \in \mathcal{K}_k(A,b)} \|Ax - b\|_2 = \min_{p \in \mathcal{P}_k, p(0) = 1} \|p(A)b\|_2 \le \kappa_2(X) \max_{z \in \lambda(A)} |p(z)| \|b\|_2.$$

 $\max_{z \in \lambda(A)} |p(z)|$ is small when

- $\triangleright \lambda(A)$ are clustered away from 0
 - a good p can be found quite easily
 - e.g. example 2 slides ago
- ▶ When $\lambda(A)$ takes $k(\ll n)$ distinct values
 - ► Then convergence in *k* GMRES iterations (why?)

Preconditioning for GMRES

We've seen that GMRES is great if spectrum clustered away from 0. If not true with

$$Ax = b$$

then precondition: find $M \in \mathbb{R}^{n \times n}$ and solve

$$MAx = Mb$$

Desiderata of M:

- lacktriangleq M simple enough s.t. applying M to vector is easy (note that each GMRES iteration requires MA-multiplication), and one of
 - 1. MA has clustered eigenvalues away from 0
 - 2. MA has a small number of distinct eigenvalues
 - 3. MA is well-conditioned $\kappa_2(MA)=O(1)$; then solve normal equation $(MA)^TMAx=(MA)^TMb$

Preconditioners: examples

- ▶ ILU (Incomplete LU) preconditioner: $A \approx LU, M = (LU)^{-1} = U^{-1}L^{-1}, L, U$ 'as sparse as $A' \Rightarrow MA \approx I$ (hopefully; 'cluster away from 0')
- For $\tilde{A} = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$, set $M = \begin{bmatrix} A^{-1} \\ (CA^{-1}B)^{-1} \end{bmatrix}$. Then if M nonsingular, $M\tilde{A}$ has eigvals $\in \{1, \frac{1}{2}(1 \pm \sqrt{5})\} \Rightarrow$ 3-step convergence [Murphy-Golub-Wathen 2000]
- ► Multigrid-based, operator preconditioning, ...

Finding effective preconditioners is never-ending research topic Prof. Andy Wathen is our Oxford expert!

Arnoldi for nonsymmetric eigenvalue problems

Arnoldi for eigenvalue problems: Arnoldi iteration+Rayleigh-Ritz (just like Lanczos alg)

- 1. Compute Q^TAQ
- 2. Eigenvalue decomposition $Q^T A Q = X \hat{\Lambda} X^{-1}$
- 3. Approximate eigenvalues $\mathrm{diag}(\hat{\Lambda})$ (Ritz values) and eigenvectors QX (Ritz vectors)

As in Lanczos, $Q = Q_k = \mathcal{K}_k(A, b)$, so simply $Q_k^T A Q_k = H_k$ (Hessenberg eigenproblem, ideal for QRalg)

Which eigenvalues are found by Arnoldi?

- ▶ Krylov subspace is invariant under shift: $K_k(A,b) = K_k(A-sI,b)$
- ▶ Thus any eigenvector that power method applied to A sI converges to should be contained in $\mathcal{K}_k(A,b)$
- ▶ To find other (e.g. interior) eigvals, shift-invert Arnoldi: $Q = \mathcal{K}_k((A sI)^{-1}, b)$