Iterative methods

We've covered direct methods (LU for Ax = b, QR for $\min ||Ax - b||_2$, QRalg for $Ax = \lambda x$). These are

- Incredibly reliable, backward stable
- Works like magic if $n \leq 10000$
- But not if n larger!

A 'big' matrix problem is one for which direct methods aren't feasible. Historically,

- ▶ 1950: *n* > 20
- ▶ 1965: n > 200
- ▶ 1980: $n \ge 2000$
- ▶ 1995: $n \ge 20000$ with ▶ 2010: $n \ge 100000$ s per computers.
 - ▶ 2020: $n \ge 1000000$ ($n \ge 50000$ on a standard desktop)

was considered 'very large'. For such problems, we need to turn to alternative algorithms: we'll cover iterative and randomised methods.

Direct vs. iterative methods

Idea of iterative methods:

- gradually refine solution iteratively
- each iteration should be (a lot) cheaper than direct methods, usually $O(n^2)$ or less
- can be (but not always) much faster than direct methods
- tends to be (slightly) less robust, nontrivial/problem-dependent analysis
- often, after $O(n^3)$ work it still gets the exact solution (ignoring roundoff errors)

image from [Trefethen-Bau]

We'll focus on Krylov subspace methods.

Basic idea of Krylov: polynomial approximation

In Krylov subspace methods, we look for an (approximate) solution \hat{x} (for Ax = b or $Ax = \lambda x$) of the form (after kth iteration) $\ell_{i} \mathcal{G}$, $\chi^{2} = A^{2} \mathcal{V} = A (A \mathcal{V})$ \mathcal{H}_{ops}

 $\hat{x} = p_{k-1}(A)v, \qquad (A^3 - \pi A + I) \vee p_3(A) \vee$ where p_{k-1} is a polynomial of degree k-1, and $v \in \mathbb{R}^n$ arbitrary (usually v = b for linsys, for eigenproblems v usually random)

Natural questions:

- Why would this be a good idea?
- One example: recall power method $\hat{x} = A^{k-1}v = p_{k-1}(A)v$ Krylov finds a "better/optimal" polynomial $p_{k-1}(A)$ We'll see more cases where Krylov is a final to be the first set of the first se
- How to turn into an algorithm?
 - Arnoldi (next), Lanczos

Orthonormal basis for $\mathcal{K}_k(A, b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

 $\mathcal{K}_{k}(A,b) := \operatorname{span}([b,Ab,A^{2}b,\ldots,A^{k-1}b])$ First step: form an orthonormal basis Q, s.t. solution can be written as $x = Qy_{\mathcal{L}} P^{\mathsf{fx}}(A^{\mathsf{f}})$

- ▶ Naive idea: Form matrix $[b, Ab, A^2b, \ldots, A^{k-1}b]$, then QR
 - [b, Ab, A²b,..., A^{k-1}b] is usually terribly conditioned! Dominated by leading eigvec
 Q is therefore extremely ill-conditioned, inaccurately computed KZKN. daningert eigner of A

Orthonormal basis for $\mathcal{K}_k(A, b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

$$\mathcal{K}_k(A,b) := \operatorname{span}([b, Ab, A^2b, \dots, A^{k-1}b])$$

First step: form an orthonormal basis Q, s.t. solution can be written as x = Qy

- ▶ Naive idea: Form matrix $[b, Ab, A^2b, \dots, A^{k-1}b]$, then QR
 - $[b, Ab, A^2b, \dots, A^{k-1}b]$ is usually terribly conditioned! Dominated by leading eigvec

Q is therefore extremely ill-conditioned, inaccurately computed

Much better solution: Arnoldi process
Multiply A once at a time to the latest orthonormal vector q_i Then orthogonalise Aq_i against previous q_j 's (j = 1, ..., i-1) (as in Gram-Schmidt) $q_i = \frac{b}{||b||}$ $q_2 = (Aq_i) - q_i q_i (Aq_i)$ $q_{iz} = \frac{q_i}{(|q_1||)}$ H_{err} $Aq_2 \in SV^{err}$ (b, Ab, A^bb) $q_3 = \frac{q_3}{(|q_2||)}$ H_{err} $q_{iz} = Aq_2 - q_i q_i^T (Aq_1) - q_2 q_2^T (Aq_2) - q_2 q_2^T (Aq_2)$

Arnoldi iteration

Set $q_1 = b/\|b\|_2$ For k = 1, 2, ...,set $v = Aq_k$ for j = 1, 2, ..., k $h_{jk} = q_j^T v$, $v = v - h_{jk} q_j \%$ orthogonalise against q_j via modified G-S end for End for • After k steps, $AQ_k = Q_{k+1}H_k = Q_kH_k + q_{k+1}[0, \dots, 0, h_{k+1,k}]$, with $Q_k = [q_1, q_2, \dots, q_k], Q_{k+1} = [Q_k, q_{k+1}], \operatorname{span}(Q_k) = \operatorname{span}([b, Ab, \dots, A^{k-1}b])$ $A \qquad \left| Q_k \right| = \left| Q_{k+1} \right| \underbrace{\tilde{H}_k}_{\tilde{H}_k}, \quad \tilde{H}_k = \left| \begin{array}{cccc} h_{1,1} & h_{1,2} & \dots & h_{1,k} \\ h_{2,1} & h_{2,2} & \dots & h_{2,k} \\ \ddots & & \vdots \\ \bigcap & h_{k,k-1} & h_{k,k} \\ & & & h_{k+1,k} \end{array} \right|, \quad Q_{k+1}^T Q_{k+1} = I_{k+1}$ $\chi = Q_{\mathbf{k}} \gamma = P_{\mathbf{k} - \mathbf{r}}(A) \mathbf{b}.$ $\mathbb{R}^{(k+1) imes k}$ upper Hessenberg

• Cost k A-multiplications+ $O(k^2)$ inner products ($O(nk^2)$)

Lanczos iteration = Avnoldi Jhen $A = A^T$

When A symmetric, Arnoldi simplifies to

$$AQ_k = Q_k T_k + q_{k+1}[0, \dots, 0, h_{k+1,k}]$$

where T_k is symmetric tridiagonal (proof: just note $H_k = Q_k^T A Q_k$ in Arnoldi)

- ▶ 3-term recurrence, orthogonalisation necessary only against last two vecs q_k, q_{k-1}
- Significant speedup over Arnoldi; cost k A-mult.+O(k) inner products (O(nk))
- In floating-point arithmetic, sometimes computed Q_k lose orthogonality and reorthogonalisation necessary (nonexaminable)

The Lanczos algorithm for symmetric eigenproblem

Rayleigh-Ritz: given symmetric A and orthonormal Q, find approximate eigenpairs hoped to "catain" eignecs (A)

- 1. Compute $Q^T A Q \in \mathbb{R}^{k \times k}$
- 2. Eigenvalue decomposition $Q^T A Q = V \hat{\Lambda} V^T$
- 3. Approximate eigenvalues diag $(\hat{\Lambda})$ (Ritz values) and eigenvectors QV (Ritz vectors)

This is a **projection** method (similar alg. available for SVD) Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz

- ▶ In this case $Q = Q_k$, so simply $Q_k^T A Q_k = T_k$ (tridiagonal eigenproblem)
- Very good convergence to extremal eigenpairs
 - Recall from Courant-Fisher $\lambda_{\max}(A) = \max_x \frac{x^T A x}{x^T x}$ Repleting Guotient.

Hence
$$\lambda_{\max}(A) \geq \max_{\substack{x \in \mathcal{K}_k(A,b)}} \frac{x^T A x}{x^T x} \geq \frac{v^T A v}{v^T v}, \quad v = A^{k-1}b$$
Lanczos output
Same for λ_{\min} , similar for e.g. λ_2
 λ_3
 λ_4
 λ_4

Experiments with Lanczos

