lterative methods
We've covered direct methods (LU for Ax = b, QR for min ||Az — b||2, QRalg for
Az = A\z). These are

» Incredibly reliable, backward stable
» Works like magic if n < 10000
» But not if n larger!

A 'big’ matrix problem is one for which direct methods aren’t feasible. Historically,
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n > 20

n > 200

n > 2000 .

n > 20000 :f;&/ ij({)u’fE/§ .

n > 100000 ~

n > 1000000 (n > 50000 on a standard desktop)

o=
was considered 'very large’. For such problems, we need to turn to alternative

algorithms: we'll cover iterative and randomised methods.



Direct vs. iterative methods

Idea of iterative methods:

>
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gradually refine solution iteratively

each iteration should be (a lot) cheaper than direct methods, usually O(n?) or less
can be (but not always) much faster than direct methods

tends to be (slightly) less robust, nontrivial /problem-dependent analysis

often, after O(n3) work it still gets the exact solution (ignoring roundoff errors)

o(1) direct
Norm of
residual . .
(log sca.le) 1terative
O(€machine) ] work —
O(m3)

image from [Trefethen-Bau]

We'll focus on Krylov subspace methods.



Basic idea of Krylov: polynomial approximation

In Krylov subspace methods, we look for an (approximate) solution & (for Ax = b or

A Az) of the form (after kth iteration) by /®2>
L= AT i i
0.5, »2: LA; V -”//4@@ Feps
& =pe-1(A), (AP~ TAc TV
S e

where pi_1 is a polynomial of degree k — 1, and v € R"™ arbitrary (usually v = b for
linsys, for eigenproblems v usually random)

Natural questions:
» Why would this be a good idea? ,
» Clearly, 'easy’ to compute QPC@&N Wél? = A&Q’&K
» One example: recall power method & =\A¥"1v = p;._1(A)v
> We'll see more cases where Krylov is powerful
» How to turn into an algorithm?

» Arnoldi (next), Lanczos



Orthonormal basis for (A, b)

Find approximate solution :1: = pr_1(A)b, i.e. in Krylov subspace

o0 = Ki(A,b) := span([b, Ab, A%b, . AAk—lbﬂ) .

/ £
. Vo= S CGADL = o A ¢ G b
First step: form an orthonormal basis (7, s.t. solution can be written as z

» Naive idea: Form matrix [b, Ab, A2b ., AF=1p] then QR

> [b, Ab, Azb ., A*¥=1p] is usually terribly conditioned! Dominated by leading eigvec
» () is therefore extrémely ill-conditioned, inaccurately computed
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Orthonormal basis for (A, b)
Find approximate solution & = py_1(A)b, i.e. in Krylov subspace

K (A, b) := span([b, Ab, A%, . .. ,@

First step: form an orthonormal basis (), s.t. solution can be written as x = Qy
» Naive idea: Form matrix [b, Ab, A%b, ..., A*~1p], then QR

> [b, Ab, A%b,. .., A*=1b] is usually terrlbly conditioned! Dominated by leading eigvec
> Qis therefore extremely ill-conditioned, inaccurately computed
. } . \onder ‘wfvi&'ﬁ%fwnau}
> I A
Much better solution: Arnoldi process T202(]

» Multiply A once at a time to the latest orthonormal vector g;
» Then orthogonalise Ag; against previous q] s(j=1,...,i—1) (as in Gram-Schmidt)
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Arnoldi iteration

Set g1 = b/||b|2
Fork=1,2,...,
set v = Aqi

forj=1,2,...,k
hji = q]Tv, v = v — hjiq; % orthogonalise against ¢; via modified G-S

end for Ny
b1k = [[vll2, @ev1 = v/his1k &J - iq( ?()'] &bhﬂd(‘ 62%]
End for Re=[G, % algw]

> After k steps, AQ; = Q]H_lfjfk = QrH + Qk—|—1[07 ..., 0, hk—&-l,k]: with
Qr =01, 92, - - - 4}, Q1 = [Qk» Gy, span(Qr) = span([b, Ab, ..., A¥1b))

hi1 hig e bk
h21  hopo oo ha,k

O Pk k—1 hl;,k
i Pk+1,k |
X = &f = Pk"( ((AO b R(k+1)xk ypper Hessenberg

» Cost k A-multiplications+O(k?) inner products (O(nk?))

A Qk |= Qk-i-l Hy |, Hy, =

T
v Qri1Qr+1 = Ikt




Lanczos iteration — AWO(JI e A:/(T

When A symmetric, Arnoldi simplifies to

AQr = QiTy + qr41[0,...,0, hy i,

where T}, is symmetric tridiagonal (proof: just note Hy = Qi AQy in Arnoldi)

t11 ti2

— B ta1  t2,2 i -
A Qi |=|Qr+1 || Tt T = v Qr1Qky1 = I

th—1,k

th k-1 tr k

tht1,k
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» 3-term recurrence, orthogonalisation necessary only against last two vecs qg, qr_1

» Significant speedup over Arnoldi; cost & A-mult.+O(k) inner products (O(nk))

» In floating-point arithmetic, sometimes computed () lose orthogonality and
reorthogonalisation necessary (nonexaminable)



Rayleigh-Ritz: given symmetric A and orthonormal |()| find approximate eigenpairs

1. Compute QTAD é@m WV“J = caza @(’]VCCS-(&

2. Eigenvalue decomposition QT AQ = VAVT

3. Approximate eigenvalues diag(A) }\Ritz values) and eigenvectors%{(Ritz vectors)
This is a projection method (similar aE. available for SVD)

0 () = Th Ak 47L)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz

The Lanczos algorithm for s;mmetric eigenproblem

» In this case Q = Q, so simply QF AQy, = Ty (tridiagonal eigenproblem)
» Very good convergence to extremal eigenpairs .
'y good convergence to extremal eigenpairs |l ¢ oniact.
» Recall from Courant-Fisher A\j,.x(A) = max, o
xT Az > UTAU’ oo Ak,
zekr(Ab) xTe = vTv

[\ y -~
~

Lanczos outpm power method T4 R
» Same for Amin, similar for e.g. Ao X= b man Y—/&L: Nrex (AR x

- = largect Bera vl

» Hence A\pax(A) >




Experiments with Lanczos

Symmetric A € R™*" n = 100, Lanczos/power method with random initial vector b
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