
Iterative methods
We’ve covered direct methods (LU for Ax = b, QR for min ‖Ax− b‖2, QRalg for
Ax = λx). These are
I Incredibly reliable, backward stable
I Works like magic if n . 10000
I But not if n larger!

A ’big’ matrix problem is one for which direct methods aren’t feasible. Historically,
I 1950: n ≥ 20
I 1965: n ≥ 200
I 1980: n ≥ 2000
I 1995: n ≥ 20000
I 2010: n ≥ 100000
I 2020: n ≥ 1000000 (n ≥ 50000 on a standard desktop)

was considered ’very large’. For such problems, we need to turn to alternative
algorithms: we’ll cover iterative and randomised methods.



Direct vs. iterative methods
Idea of iterative methods:
I gradually refine solution iteratively
I each iteration should be (a lot) cheaper than direct methods, usually O(n2) or less
I can be (but not always) much faster than direct methods
I tends to be (slightly) less robust, nontrivial/problem-dependent analysis
I often, after O(n3) work it still gets the exact solution (ignoring roundoff errors)

image from [Trefethen-Bau]

We’ll focus on Krylov subspace methods.



Basic idea of Krylov: polynomial approximation
In Krylov subspace methods, we look for an (approximate) solution x̂ (for Ax = b or
Ax = λx) of the form (after kth iteration)

x̂ = pk−1(A)v ,

where pk−1 is a polynomial of degree k − 1, and v ∈ Rn arbitrary (usually v = b for
linsys, for eigenproblems v usually random)

Natural questions:
I Why would this be a good idea?

I Clearly, ’easy’ to compute
I One example: recall power method x̂ = Ak−1v = pk−1(A)v

Krylov finds a “better/optimal” polynomial pk−1(A)
I We’ll see more cases where Krylov is powerful

I How to turn into an algorithm?
I Arnoldi (next), Lanczos



Orthonormal basis for Kk(A, b)
Find approximate solution x̂ = pk−1(A)b, i.e. in Krylov subspace

Kk(A, b) := span([b, Ab,A2b, . . . , Ak−1b])

First step: form an orthonormal basis Q, s.t. solution can be written as x = Qy

I Naive idea: Form matrix [b, Ab,A2b, . . . , Ak−1b], then QR
I [b, Ab,A2b, . . . , Ak−1b] is usually terribly conditioned! Dominated by leading eigvec
I Q is therefore extremely ill-conditioned, inaccurately computed

I Much better solution: Arnoldi process
I Multiply A once at a time to the latest orthonormal vector qi

I Then orthogonalise Aqi against previous qj ’s (j = 1, . . . , i− 1) (as in Gram-Schmidt)
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Arnoldi iteration
Set q1 = b/‖b‖2
For k = 1, 2, . . . ,

set v = Aqk

for j = 1, 2, . . . , k
hjk = qT

j v, v = v − hjkqj % orthogonalise against qj via modified G-S
end for
hk+1,k = ‖v‖2, qk+1 = v/hk+1,k

End for
I After k steps, AQk = Qk+1H̃k = QkHk + qk+1[0, . . . , 0, hk+1,k], with
Qk = [q1, q2, . . . , qk], Qk+1 = [Qk, qk+1], span(Qk) = span([b, Ab, . . . , Ak−1b])

A Qk = Qk+1 H̃k , H̃k =


h1,1 h1,2 . . . h1,k

h2,1 h2,2 . . . h2,k

. . .
...

hk,k−1 hk,k

hk+1,k


︸ ︷︷ ︸

R(k+1)×k upper Hessenberg

, QT
k+1Qk+1 = Ik+1

I Cost k A-multiplications+O(k2) inner products (O(nk2))



Lanczos iteration
When A symmetric, Arnoldi simplifies to

AQk = QkTk + qk+1[0, . . . , 0, hk+1,k],

where Tk is symmetric tridiagonal (proof: just note Hk = QT
kAQk in Arnoldi)

A Qk = Qk+1 T̃k , T̃k =


t1,1 t1,2

t2,1 t2,2
. . .

. . . tk−1,k

tk,k−1 tk,k

tk+1,k


︸ ︷︷ ︸
R(k+1)×k symmetric tridiagonal

, QT
k+1Qk+1 = Ik+1

I 3-term recurrence, orthogonalisation necessary only against last two vecs qk, qk−1
I Significant speedup over Arnoldi; cost k A-mult.+O(k) inner products (O(nk))
I In floating-point arithmetic, sometimes computed Qk lose orthogonality and

reorthogonalisation necessary (nonexaminable)



The Lanczos algorithm for symmetric eigenproblem
Rayleigh-Ritz: given symmetric A and orthonormal Q, find approximate eigenpairs

1. Compute QTAQ

2. Eigenvalue decomposition QTAQ = V Λ̂V T

3. Approximate eigenvalues diag(Λ̂) (Ritz values) and eigenvectors QV (Ritz vectors)
This is a projection method (similar alg. available for SVD)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz
I In this case Q = Qk, so simply QT

kAQk = Tk (tridiagonal eigenproblem)
I Very good convergence to extremal eigenpairs

I Recall from Courant-Fisher λmax(A) = maxx
xT Ax
xT x

I Hence λmax(A) ≥ max
x∈Kk(A,b)

xTAx

xTx︸ ︷︷ ︸
Lanczos output

≥ vTAv

vT v
, v = Ak−1b︸ ︷︷ ︸

power method
I Same for λmin, similar for e.g. λ2



Experiments with Lanczos
Symmetric A ∈ Rn×n, n = 100, Lanczos/power method with random initial vector b
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