Iterative methods

We've covered direct methods (LU for Ax = b, QR for $\min ||Ax - b||_2$, QRalg for $Ax = \lambda x$). These are

- Incredibly reliable, backward stable
- ▶ Works like magic if $n \lesssim 10000$
- But not if n larger!

A 'big' matrix problem is one for which direct methods aren't feasible. Historically,

- ▶ 1950: *n* ≥ 20
- ▶ 1965: n ≥ 200
- ▶ 1980: *n* ≥ 2000
- ▶ 1995: *n* ≥ 20000
- ▶ 2010: *n* ≥ 100000
- ▶ 2020: $n \ge 1000000$ ($n \ge 50000$ on a standard desktop)

was considered 'very large'. For such problems, we need to turn to alternative algorithms: we'll cover **iterative** and **randomised** methods.

Direct vs. iterative methods

Idea of iterative methods:

- gradually refine solution iteratively
- \blacktriangleright each iteration should be (a lot) cheaper than direct methods, usually $O(n^2)$ or less
- can be (but not always) much faster than direct methods
- tends to be (slightly) less robust, nontrivial/problem-dependent analysis
- often, after $O(n^3)$ work it still gets the exact solution (ignoring roundoff errors)

image from [Trefethen-Bau]

We'll focus on Krylov subspace methods.

Basic idea of Krylov: polynomial approximation

In Krylov subspace methods, we look for an (approximate) solution \hat{x} (for Ax = b or $Ax = \lambda x$) of the form (after kth iteration)

 $\hat{x} = p_{k-1}(A)v ,$

where p_{k-1} is a polynomial of degree k-1, and $v \in \mathbb{R}^n$ arbitrary (usually v = b for linsys, for eigenproblems v usually random)

Natural questions:

- Why would this be a good idea?
 - Clearly, 'easy' to compute
 - One example: recall power method x̂ = A^{k-1}v = p_{k-1}(A)v Krylov finds a "better/optimal" polynomial p_{k-1}(A)
 - We'll see more cases where Krylov is powerful
- How to turn into an algorithm?
 - Arnoldi (next), Lanczos

Orthonormal basis for $\mathcal{K}_k(A, b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

$$\mathcal{K}_k(A,b) := \mathsf{span}([b, Ab, A^2b, \dots, A^{k-1}b])$$

First step: form an orthonormal basis Q, s.t. solution can be written as x = Qy

- ▶ Naive idea: Form matrix $[b, Ab, A^2b, \dots, A^{k-1}b]$, then QR
 - ▶ $[b, Ab, A^2b, \dots, A^{k-1}b]$ is usually terribly conditioned! Dominated by leading eigvec
 - Q is therefore extremely ill-conditioned, inaccurately computed

Orthonormal basis for $\mathcal{K}_k(A, b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

$$\mathcal{K}_k(A,b) := \mathsf{span}([b, Ab, A^2b, \dots, A^{k-1}b])$$

First step: form an orthonormal basis Q, s.t. solution can be written as x = Qy

- ▶ Naive idea: Form matrix $[b, Ab, A^2b, \dots, A^{k-1}b]$, then QR
 - ▶ $[b, Ab, A^2b, \dots, A^{k-1}b]$ is usually terribly conditioned! Dominated by leading eigvec
 - Q is therefore extremely ill-conditioned, inaccurately computed
- Much better solution: Arnoldi process
 - Multiply A once at a time to the latest orthonormal vector q_i
 - ▶ Then orthogonalise Aq_i against previous q_j 's (j = 1, ..., i 1) (as in Gram-Schmidt)

Arnoldi iteration

Set $q_1 = b/\|b\|_2$ For k = 1, 2, ...,set $v = Aq_k$ for j = 1, 2, ..., k $h_{jk} = q_j^T v, v = v - h_{jk}q_j$ % orthogonalise against q_j via modified G-S end for $h_{k+1,k} = ||v||_2, q_{k+1} = v/h_{k+1,k}$

End for

• After k steps,
$$AQ_k = Q_{k+1}\tilde{H}_k = Q_kH_k + q_{k+1}[0, \dots, 0, h_{k+1,k}]$$
, with $Q_k = [q_1, q_2, \dots, q_k], Q_{k+1} = [Q_k, q_{k+1}]$, span $(Q_k) =$ span $([b, Ab, \dots, A^{k-1}b])$

$$A \qquad Q_{k} = Q_{k+1} \begin{bmatrix} \tilde{H}_{k} \end{bmatrix}, \quad \tilde{H}_{k} = \begin{bmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,k} \\ h_{2,1} & h_{2,2} & \dots & h_{2,k} \\ \ddots & & \vdots \\ & & & & h_{k,k-1} & h_{k,k} \\ & & & & & h_{k+1,k} \end{bmatrix}, \quad Q_{k+1}^{T}Q_{k+1} = I_{k+1}$$

$$\mathbb{R}^{(k+1)\times k} \text{ upper Hessenberg}$$

• Cost k A-multiplications+ $O(k^2)$ inner products $(O(nk^2))$

Lanczos iteration

When A symmetric, Arnoldi simplifies to

 $AQ_k = Q_k T_k + q_{k+1}[0, \dots, 0, h_{k+1,k}],$

where T_k is symmetric tridiagonal (proof: just note $H_k = Q_k^T A Q_k$ in Arnoldi)

 $\mathbb{R}^{(k+1) imes k}$ symmetric tridiagonal

- ▶ 3-term recurrence, orthogonalisation necessary only against last two vecs q_k, q_{k-1}
- Significant speedup over Arnoldi; cost k A-mult.+O(k) inner products (O(nk))
- In floating-point arithmetic, sometimes computed Q_k lose orthogonality and reorthogonalisation necessary (nonexaminable)

The Lanczos algorithm for symmetric eigenproblem

Rayleigh-Ritz: given symmetric A and orthonormal Q, find approximate eigenpairs

- 1. Compute $Q^T A Q$
- 2. Eigenvalue decomposition $Q^T A Q = V \hat{\Lambda} V^T$
- 3. Approximate eigenvalues diag $(\hat{\Lambda})$ (Ritz values) and eigenvectors QV (Ritz vectors)

This is a **projection** method (similar alg. available for SVD)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz

- ▶ In this case $Q = Q_k$, so simply $Q_k^T A Q_k = T_k$ (tridiagonal eigenproblem)
- Very good convergence to extremal eigenpairs
 - ► Recall from Courant-Fisher $\lambda_{\max}(A) = \max_x \frac{x^T A x}{x^T x}$ ► Hence $\lambda_{\max}(A) \ge \max_{\substack{x \in \mathcal{K}_k(A,b)}} \frac{x^T A x}{x^T x} \ge \underbrace{\frac{v^T A v}{v^T v}}_{\text{power method}} \times \underbrace{\frac{v^T A v}{v^T v}}_{\text{power method}}$

Experiments with Lanczos

Symmetric $A \in \mathbb{R}^{n \times n}$, n = 100, Lanczos/power method with random initial vector b

Convergence to dominant eigenvalue

