[terative methods

We've covered direct methods (LU for Az = b, QR for min ||Az — b|

2, QRalg for

Az = Az). These are

» Incredibly reliable, backward stable
» Works like magic if n < 10000
» But not if n larger!

A ’'big’ matrix problem is one for which direct methods aren't feasible. Historically,

vVvvyyVvyy

>

1950:
1965:
1980:
1995:
2010:
2020:

n > 20

n > 200

n > 2000

n > 20000

n > 100000

n > 1000000 (n > 50000 on a standard desktop)

was considered 'very large’. For such problems, we need to turn to alternative

algorithms: we'll cover iterative and randomised methods.

Direct

vs. iterative methods

Idea of iterative methods:

>

vvyyy

gradually refine solution iteratively

each iteration should be (a lot) cheaper than direct methods, usually O(n?) or less
can be (but not always) much faster than direct methods

tends to be (slightly) less robust, nontrivial /problem-dependent analysis

often, after O(n?) work it still gets the exact solution (ignoring roundoff errors)

o(1) direct
Norm of
residual . .
(log scale) iterative
O(emachine) _— work —
Oo(m?)

image from [Trefethen-Baul]

We'll focus on Krylov subspace methods.

Basic idea of Krylov: polynomial approximation

In Krylov subspace methods, we look for an (approximate) solution & (for Az = b or
Az = Az) of the form (after kth iteration)

b= pk_l(A)U 5

where pi_1 is a polynomial of degree k — 1, and v € R"™ arbitrary (usually v = b for
linsys, for eigenproblems v usually random)

Natural questions:
» Why would this be a good idea?

» Clearly, 'easy’ to compute
» One example: recall power method & = A*~1y = p,_(A)v
Krylov finds a “better/optimal” polynomial pg_1(A)
> We'll see more cases where Krylov is powerful
» How to turn into an algorithm?

> Arnoldi (next), Lanczos

Orthonormal basis for C;.(A, b)

Find approximate solution & = py_1(A)b, i.e. in Krylov subspace
K1(A,b) := span([b, Ab, A%,..., A*=1p])

First step: form an orthonormal basis (), s.t. solution can be written as z = Qy
» Naive idea: Form matrix [b, Ab, A%, ..., A*=11], then QR
> [b, Ab, A%b, ..., A¥=1b] is usually terribly conditioned! Dominated by leading eigvec
» () is therefore extremely ill-conditioned, inaccurately computed

Orthonormal basis for C;.(A, b)

Find approximate solution & = py_1(A)b, i.e. in Krylov subspace
K1(A,b) := span([b, Ab, A%,..., A*=1p])

First step: form an orthonormal basis (), s.t. solution can be written as z = Qy
» Naive idea: Form matrix [b, Ab, A%, ..., A*=11], then QR
> [b, Ab, A%b, ..., A¥=1b] is usually terribly conditioned! Dominated by leading eigvec
» () is therefore extremely ill-conditioned, inaccurately computed

» Much better solution: Arnoldi process

» Multiply A once at a time to the latest orthonormal vector ¢;
» Then orthogonalise Ag; against previous g;'s (j =1,...,i—1) (as in Gram-Schmidt)

Arnoldi iteration

Set ¢1 = b/Hsz
Fork=1,2,...,
set v = Aqy

forj=1,2,....k
hjr = quv, v = v — h;rg; % orthogonalise against g; via modified G-S
end for
hi1e = vll2) Qo1 = v/Pis1 e
End for
> After k steps, AQy = Quy1Hy = QrHy + qui1]0,...,0, hyy1], with
Qr = l11,q2, - - @), Qrs1 = [Qk> @+1), span(Qy) = span([b, Ab, ..., A*1p])

hl,l h1,2 cee hl,k
ha,1 hag . ha,k

A Qk |=| Qr+1 7 Hy = Lol Qi Qe = Ti

k=1 hik

Rt 1,k

R(k+1)xE ypper Hessenberg

» Cost k A-multiplications+O(k?) inner products (O(nk?))

Lanczos iteration
When A symmetric, Arnoldi simplifies to

AQr = Qr Tk + qry 1[0, ..., 0, hig 1.1,

where Ty, is symmetric tridiagonal (proof: just note Hy = Q{AQk in Arnoldi)

t21 122
4 Q Q ' T
k|=— k+1 Tk) Ty = s Qk+1Qk+1 = Ik+1

te—1.k

Trk—1 [

Lht1,k

R(k+1)xk symmetric tridiagonal
» 3-term recurrence, orthogonalisation necessary only against last two vecs g, qr_1
» Significant speedup over Arnoldi; cost k& A-mult.+O(k) inner products (O(nk))

» In floating-point arithmetic, sometimes computed Jj lose orthogonality and
reorthogonalisation necessary (nonexaminable)

The Lanczos algorithm for symmetric eigenproblem
Rayleigh-Ritz: given symmetric A and orthonormal @, find approximate eigenpairs

1. Compute QT AQ
2. Eigenvalue decomposition QT AQ = VAVT

3. Approximate eigenvalues diag(A) (Ritz values) and eigenvectors QV (Ritz vectors)

This is a projection method (similar alg. available for SVD)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz

» In this case Q = Qy, so simply Q{AQk = T}, (tridiagonal eigenproblem)
P> Very good convergence to extremal eigenpairs

T
» Recall from Courant-Fisher A\ ax(A4) = max, f”m;}f
xT Az S T Av

> Hence A A) > max 27 = AR
max() - ze/Ck(A,b) me — ’UT’U)
—
Lanczos output power method

» Same for Apiy, similar for e.g. Ao

Experiments with Lanczos

Symmetric A € R™*™ n = 100, Lanczos/power method with random initial vector b

Convergence of Ritz values with Lanczos

. 15
10
ol Rizvavese o ¢ "
10° . . .
= sl . . o« .
= 10° : . . .o
E o * . : e e :e\gerwa\ues
\ Sf . :
! Lanczos * s e
1018 . . I [» .../power L c L.
0 20 40 60 80 100 10 L L ? e e e o .
Iterations 0 2 4 6 8 10 12
Lanczos iterations
Convergence to dominant .
. : Convergence of dominant
eigenvalue

eigenvalue

