Solving an eigenvalue problem
Given A € R™*™ or C™*7,
Ax = Mz
Goal: find all eigenvalues (and eigenvectors) of a matrix
» Look for Schur foom A =UTU*

We'll describe an algorithm called the QR algorithm that is used universally, e.g. by
MATLAB's eig. It

> finds all eigenvalues (approximately but reliably) in O(n?) flops,
P is backward stable.

Sister problem: Given A € R™*" or C"*", compute SVD A =UXV*

» ok’ algorithm: eig(AT A) to find V, then normalise AV
> there's a better algorithm: Golub-Kahan bidiagonalisation

QR algorithm for eigenproblems
Set A; = A, and

Al =Q1R1, Ay =RiQ1, Ay =Q2Ry, A3= Ry(Qo,

> Ay are all similar: Apyq = QkAka
» We shall 'show’ that A — triangular triangular (diagonal if A normal)
» Basically: QR(factorise)— RQ(swap)— QR — RQ — - --

QR algorithm for eigenproblems
Set A; = A, and

Al =Q1R1, Ay=RiQi, Ax=Q2Ry, Az= RyQ2,

> Ay are all similar: Apyq = Q{Aka
» We shall 'show’ that A — triangular triangular (diagonal if A normal)
» Basically: QR(factorise)— RQ(swap)— QR — RQ — - --

» Fundamental work by Francis (61,62) and Kublanovskaya (63)

» Truly Magical algorithm!
» backward stable, as based on orthogonal transforms
> always converges (with shifts), but global proof unavailable(!)
> uses 'shifted inverse power method’ (rational functions) without inversions

QR algorithm and power method
QR algorithm: Ay = Qi Rg, Ax+1 = RipQk, repeat. Claims: for k > 1,

AF = (Q1---Qx)(Ry--- R1) = QBRE) | Apy; = (QW)TAQW).
Proof : recall Apyq1 = Q;{Aka, repeat.

Proof by induction: k =1 trivial.
Suppose AF~1 = Q*-D R(E=1) We have

Ay, = (QF D) AQHY = QpRy.
Then AQ*—1 = Q=D Q. Ry, and so

AF = AQUFD RE-D = =D, R, R* 1) = W) r(F) O

QR algorithm and power method
QR algorithm: Ap = Qi Rk, Ak—i—l = RpQ}, repeat.

AR = (Q1-+ Qp)(Rg -+ R1) = QWRW | Apyr = (@W)TAQMP.

QR factorisation of A*: 'dominated by leading eigenvector’ z1,
where Azy = Ajz (recall power method)

In particular, consider A*[1,0,...,0]T = AFe,:

> AFe, = R¥)(1,1)Q™(:,1), parallel to 1st column of Q¥
» By power method, this implies Q) (:,1) — z;
» Hence by Api1 = (QMNTAQWM | Au(:,1) — [A1,0,...,0]7

Progress! But there is much better news

QR algorithm and inverse power method
QR algorithm: Ap = Qi Rk, Ak—i—l = RpQ}, repeat.

AR = (Q1-+ Qp)(Rg -+ R1) = QWRW | Apy1 = (QW)TAQW.

Now take inverse: A=F = (R®))=1(Q(#))*,
Conjugate transpose: (A~ %) = Q) (RF))—*
= QR factorization of matrix (A~%)* with eigvals 7(\;) = A\;F
= Connection also with (unshifted) inverse power method
NB no matrix inverse performed

» This means final column of Q) converges to minimum left eigenvector x,, with

rate P“K;lll, hence Ag(n,:) — [0,...,0, \,]
» (Very) fast convergence if |\,| < [An—1]

» Can we force this situation? Yes by shifts

QR algorithm with shifts and shifted inverse power method

1. Ap — sl = QrRE (QR factorization)
2. Api1 = RpQr + sk, k<« k+1, repeat.

* k * * *
* * * * *

Roughly, if sy &~ Ay, then Agy1 ~ [+ * * * = | by argument just made.
* ok ok % *

QR algorithm with shifts and shifted inverse power method

1. Ap — sl = QrRE (QR factorization)
2. Api1 = RpQr + sk, k<« k+1, repeat.
k

[TA=s0)=QWR™ (= Q1+ Qr)(Ri -+ Ry))

i=1
Proof: Suppose true for £ — 1. Then QR alg. computes
(@) (A= s, NQ™™ = QiRy, s0 (A — s, 1)QFY = QWD QLRy, hence
k
[[A4-sI) = (A-sD)QHVRFY = QW QR R = QW R®.

i=1
Inverse conjugate transpose: [[%_ (A — s;1) " = Q(k)(R(k))_*
> QR factorization of matrix with eigvals r(\;) = [IF,)\ —

P Ideally, choose s ~ A\,
» Connection with shifted inverse power method, hence rational approximation

QR algorithm preprocessing

We've seen the QR iterations drives colored entries to O (esp. red ones)

b

I
EE
* X X X X
EE
* Kk X X X
* ¥ X X ¥

» Hence A, , = Ay, so choosing s, = A, ,, is sensible

» This reduces #QR iterations to O(n) (empirical but reliable estimate)
» But each iteration is O(n?) for QR, overall O(n?)

» We next discuss a preprocessing technique to reduce to O(n?)

QR algorithm preprocessing: Hessenberg reduction

To improve cost of QR factorisation, first reduce via orthogonal Householder
transformations

* ok ok k% ¥k ok k% 0
* ok ok k% * ok ok x ok *
A: * ok ok ok x|, HlA: koK ok k| H1:]721}11},{,’01: *
* ok ok k% * ok k% *
* ok ok k% * ok k% *
* % % ok sk
* % %k sk
Then H1AH| = %+ % x x|. Repeat with Hy =1 — 2v2v2T,v2 = [0,0,*,*,*]T,
* % % %
* % % %
* ook ckox ok ¥k ok ok ok
* ook ckox ok ¥k ok ok ok
HyH\AH\Hy = ok kx|, HsHoH\AH{HoH3 = ok % ox|,
* ok k * ok ok
* ok k -

Hessenberg reduction continued

%k % % % % k% % % % k% % % %k % % %

% ok % % % %k % % % * k% % % * ok % % %

A=]x % x x =* Hy ¥ % ok % Hy ¥ % ok % Hj Hy, o * % % %
— — — —

%k ¥ % % * k% % * k% % %

» QR iterations preserve structure: if Ay = QR Hessenberg, then so is Ay = RQ)
> using Givens rotations, each QR iter is O(n?) (not O(n?))
» overall shifted QR algorithm cost is O(n3), ~ 25n3 flops

» Remaining task (done by shifted QR): drive subdiagonal * to 0
» bottom-right * — \,,, can be used for shift s

Deflation
Once bottom-right |x| < €,

* ok ok k% * % ok k%
¥ ok ok k% ¥k ok k%
¥ % % x| R %% ok ok
¥ x k %k ok

* % *

and continue with shifted QR on (n — 1) x (n — 1) block, repeat

QR algorithm in action

loglp(\)]

No shift (plain QR)

Convergence of |A;41]
QR with shifts

10"L 100
10° 10°
10710 10710
108 10718
0 100 200 300 400 500 600 700 800 0 2 4 6 8 10 12
Iterations Iterations
underlying functions (red dots: eigvals)
1000
25
20
0
__ 15
z
% 10
-1000 k-
5
0
-2000 -5
-10
-4 -2 0 2 4 -4 2 0 2 4

QR algorithm: other improvements/simplifications

» Double-shift strategy for A € R"*"
» (A —sI)(A—5I)= QR using only real arithmetic
> Aggressive early deflation [Braman-Byers-Mathias 2002]

> Examine lower-right (say 100 x 100) block instead of (n,n — 1) element
» dramatic speedup (= x10)

» Balancing A + DAD!, D: diagonal

> reduce ||[DAD™!||: better-conditioned eigenvalues

» For nonsymmetric A, global convergence is NOT established

» of course it always converges in practice.. another big open problem in numerical
linear algebra

QR algorithm for symmetric A

» Initial reduction to Hessenberg form — tridiagonal

* k% %k % - * % *
ko ok ok ok ok ok ok ok %k ko ok ok * ok %k
= Q1 Q2 Qs
A*****H ok ok k| Y] P < * ok %
k% ok ok % x ok ok % * * k% ok
* k% ok ok * ok %k ok * ok %k -

» QR steps for tridiagonal: O(n) instead of O(n?) per step

» Powerful alternatives available for tridiagonal eigenproblem (divide-conquer
[Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
> Cost: 3n? flops for eigvals, ~ 10n® for eigvecs (store Givens rotations)

QR algorithm for symmetric A

» Initial reduction to Hessenberg form — tridiagonal
* ok * ok *

*

%1

A=

LR
LR I T
¥ K %X %
* ¥ ¥ %
* Ok K %X %

*
*
*
*

L
LR I T
EE T
L
*
*

» QR steps for tridiagonal: O(n) instead of O(n?) per step

» Powerful alternatives available for tridiagonal eigenproblem (divide-conquer
[Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)

> Cost: 3n? flops for eigvals, ~ 10n® for eigvecs (store Givens rotations)

» Self advertisement (nonexaminable): spectral divide-and-conquer (w/ Freund,
Higham); which is all about rational approximation

* ok ok k% * ok k * .
%k k% % % k% % % *
A=|x % % x *Vl * % Va * % V3 * =A
— — —
* ok ok % % % % * *
* ok ok % % * % * *

Golub-Kahan for SVD

Apply Householder reflectors from left and right (different ones) to bidiagonalize

A—B=Hp, - -H1AHR 1HRo - Hryp o

* ok * ok * ok

* ok

H . H; ,
*|42L.3 * i'JB7

—

H
AL

*

* ok ok ok o
L S
b S
* ok ok o
X ok ot

* ok ok b
* o %

*

> 0i(A) = 0i(B)
» Once bidiagonalized,

> Mathematically, do QR alg on BT B (symmetric tridiagonal)
> More elegant: divide-and-conquer [Gu-Eisenstat 1995] or dqds algorithm
[Fernando-Parlett 1994]; nonexaminable

» Cost: ~ 4mn? flops for singvals ¥, ~ 20mn? flops for singvecs U, V/

QZ algorithm for generalised eigenvalue problems

Generalised eigenvalue problem

Ax = \Bz, A, B e Cmm

> A, B given, find eigenvalues A\ and eigenvector x
> n eigenvalues, roots of det(A — AB)
» Important case: A, B symmetric, B positive definite: A all real

QZ algorithm: look for unitary Q, Z s.t. QAZ,QBZ both upper triangular

» then diag(QAZ)/diag(QBZ) are eigenvalues

Algorithm: first reduce A, B to Hessenberg-triangular form
then implicitly do QR to B~'A (without inverting B)
Cost: ~ 50n3

>
>
>
» See [Golub-Van Loan] for details

Tractable eigenvalue problems

» Standard eigenvalue problems Az = \x

> symmetric (4/3n3 flops for eigvals, +9n? for eigvecs)
> nonsymmetric (10n> flops for eigvals, +15n for eigvecs)

> SVD A=UXV* for A€ C™": (3mn? flops for singvals, +20mn? for
singvecs)

» Generalized eigenvalue problems Ax = ABxz , A, B € C"*"

» Polynomial eigenvalue problems, e.g. (degree k = 2)
PNz =(NA+AB+C0)r=0, A, B,C € C""™:~ 20(nk)?

» Nonlinear problems, e.g. N(\)z = (Aexp(\) + B)z =0
> often solved via approximating by polynomial N(\) = P()\)
> more difficult: A(xz)z = Az eigenvector nonlinearity

Further speedup when structure present (e.g. sparse, low-rank)

