
Solving an eigenvalue problem
Given A ∈ Rn×n or Cn×n,

Ax = λx

Goal: find all eigenvalues (and eigenvectors) of a matrix
I Look for Schur form A = UTU∗

We’ll describe an algorithm called the QR algorithm that is used universally, e.g. by
MATLAB’s eig. It
I finds all eigenvalues (approximately but reliably) in O(n3) flops,
I is backward stable.

Sister problem: Given A ∈ Rm×n or Cm×n, compute SVD A = UΣV ∗

I ’ok’ algorithm: eig(ATA) to find V , then normalise AV
I there’s a better algorithm: Golub-Kahan bidiagonalisation

QR algorithm for eigenproblems
Set A1 = A, and

A1 = Q1R1, A2 = R1Q1, A2 = Q2R2, A3 = R2Q2, . . .

I Ak are all similar: Ak+1 = QTkAkQk
I We shall ’show’ that A→ triangular triangular (diagonal if A normal)
I Basically: QR(factorise)→ RQ(swap)→ QR→ RQ→ · · ·

I Fundamental work by Francis (61,62) and Kublanovskaya (63)

I Truly Magical algorithm!
I backward stable, as based on orthogonal transforms
I always converges (with shifts), but global proof unavailable(!)
I uses ’shifted inverse power method’ (rational functions) without inversions

QR algorithm for eigenproblems
Set A1 = A, and

A1 = Q1R1, A2 = R1Q1, A2 = Q2R2, A3 = R2Q2, . . .

I Ak are all similar: Ak+1 = QTkAkQk
I We shall ’show’ that A→ triangular triangular (diagonal if A normal)
I Basically: QR(factorise)→ RQ(swap)→ QR→ RQ→ · · ·

I Fundamental work by Francis (61,62) and Kublanovskaya (63)

I Truly Magical algorithm!
I backward stable, as based on orthogonal transforms
I always converges (with shifts), but global proof unavailable(!)
I uses ’shifted inverse power method’ (rational functions) without inversions

QR algorithm and power method
QR algorithm: Ak = QkRk, Ak+1 = RkQk, repeat. Claims: for k ≥ 1,

Ak = (Q1 · · ·Qk)(Rk · · ·R1) =: Q(k)R(k) , Ak+1 = (Q(k))TAQ(k).

Proof : recall Ak+1 = QTkAkQk, repeat.

Proof by induction: k = 1 trivial.
Suppose Ak−1 = Q(k−1)R(k−1). We have

Ak = (Q(k−1))∗AQ(k−1) = QkRk.

Then AQ(k−1) = Q(k−1)QkRk, and so

Ak = AQ(k−1)R(k−1) = Q(k−1)QkRkR
(k−1) = Q(k)R(k)�

QR algorithm and power method
QR algorithm: Ak = QkRk, Ak+1 = RkQk, repeat.

Ak = (Q1 · · ·Qk)(Rk · · ·R1) =: Q(k)R(k) , Ak+1 = (Q(k))TAQ(k).

QR factorisation of Ak: ’dominated by leading eigenvector’ x1,
where Ax1 = λ1x1 (recall power method)

In particular, consider Ak[1, 0, . . . , 0]T = Aken:
I Aken = R(k)(1, 1)Q(k)(:, 1), parallel to 1st column of Q(k)

I By power method, this implies Q(k)(:, 1)→ x1

I Hence by Ak+1 = (Q(k))TAQ(k) , Ak(:, 1)→ [λ1, 0, . . . , 0]T

Progress! But there is much better news

QR algorithm and inverse power method
QR algorithm: Ak = QkRk, Ak+1 = RkQk, repeat.

Ak = (Q1 · · ·Qk)(Rk · · ·R1) =: Q(k)R(k) , Ak+1 = (Q(k))TAQ(k).

Now take inverse: A−k = (R(k))−1(Q(k))∗,
Conjugate transpose: (A−k)∗ = Q(k)(R(k))−∗

⇒ QR factorization of matrix (A−k)∗ with eigvals r(λi) = λ−ki
⇒ Connection also with (unshifted) inverse power method

NB no matrix inverse performed

I This means final column of Q(k) converges to minimum left eigenvector xn with
rate |λn−1|

|λn| , hence Ak(n, :)→ [0, . . . , 0, λn]
I (Very) fast convergence if |λn| � |λn−1|
I Can we force this situation? Yes by shifts

QR algorithm with shifts and shifted inverse power method
1. Ak − skI = QkRk (QR factorization)
2. Ak+1 = RkQk + skI, k ← k + 1, repeat.

Roughly, if sk ≈ λn, then Ak+1 ≈

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

λn

 by argument just made.

QR algorithm with shifts and shifted inverse power method
1. Ak − skI = QkRk (QR factorization)
2. Ak+1 = RkQk + skI, k ← k + 1, repeat.

k∏
i=1

(A− siI) = Q(k)R(k) (= (Q1 · · ·Qk)(Rk · · ·R1))

Proof: Suppose true for k − 1. Then QR alg. computes
(Q(k−1))∗(A− skI)Q(k−1) = QkRk, so (A− skI)Q(k−1) = Q(k−1)QkRk, hence

k∏
i=1

(A− siI) = (A− skI)Q(k−1)R(k−1) = Q(k−1)QkRkR
(k−1) = Q(k)R(k).

Inverse conjugate transpose:
∏k
i=1(A− siI)−∗ = Q(k)(R(k))−∗

I QR factorization of matrix with eigvals r(λj) =
∏k
i=1

1
λ̄j−si

I Ideally, choose sk ≈ λn
I Connection with shifted inverse power method, hence rational approximation

QR algorithm preprocessing
We’ve seen the QR iterations drives colored entries to 0 (esp. red ones)

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

I Hence An,n → λn, so choosing sk = An,n is sensible
I This reduces #QR iterations to O(n) (empirical but reliable estimate)
I But each iteration is O(n3) for QR, overall O(n4)
I We next discuss a preprocessing technique to reduce to O(n3)

QR algorithm preprocessing: Hessenberg reduction
To improve cost of QR factorisation, first reduce via orthogonal Householder
transformations

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

, H1A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

, H1 = I − 2v1v
T
1 , v1 =

0
∗
∗
∗
∗

Then H1AH1 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. Repeat with H2 = I − 2v2v
T
2 , v2 = [0, 0, ∗, ∗, ∗]T , ...:

H2H1AH1H2 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

, H3H2H1AH1H2H3 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

,

Hessenberg reduction continued

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

H1
→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

H2
→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

H3
→ ···

Hn−2
→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

.

I QR iterations preserve structure: if A1 = QR Hessenberg, then so is A2 = RQ

I using Givens rotations, each QR iter is O(n2) (not O(n3))
I overall shifted QR algorithm cost is O(n3),≈ 25n3 flops

I Remaining task (done by shifted QR): drive subdiagonal ∗ to 0
I bottom-right ∗ → λn, can be used for shift sk

Deflation
Once bottom-right |∗| < ε,

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 ≈

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

and continue with shifted QR on (n− 1)× (n− 1) block, repeat

QR algorithm in action
Convergence of |Ai+1,i|

No shift (plain QR)

0 100 200 300 400 500 600 700 800

Iterations

10
-15

10
-10

10
-5

10
0

QR with shifts

0 2 4 6 8 10 12

Iterations

10
-15

10
-10

10
-5

10
0

underlying functions (red dots: eigvals)

-4 -2 0 2 4

-2000

-1000

0

1000

lo
g
|p

(λ
)|

-4 -2 0 2 4
-10

-5

0

5

10

15

20

25

lo
g
|p

(λ
)|

QR algorithm: other improvements/simplifications
I Double-shift strategy for A ∈ Rn×n

I (A− sI)(A− s̄I) = QR using only real arithmetic
I Aggressive early deflation [Braman-Byers-Mathias 2002]

I Examine lower-right (say 100× 100) block instead of (n, n− 1) element
I dramatic speedup (≈ ×10)

I Balancing A← DAD−1, D: diagonal
I reduce ‖DAD−1‖: better-conditioned eigenvalues

I For nonsymmetric A, global convergence is NOT established
I of course it always converges in practice.. another big open problem in numerical

linear algebra

QR algorithm for symmetric A
I Initial reduction to Hessenberg form → tridiagonal

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Q1
→

∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Q2
→

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Q3
→

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

I QR steps for tridiagonal: O(n) instead of O(n2) per step
I Powerful alternatives available for tridiagonal eigenproblem (divide-conquer

[Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
I Cost: 4

3n
3 flops for eigvals, ≈ 10n3 for eigvecs (store Givens rotations)

I Self advertisement (nonexaminable): spectral divide-and-conquer (w/ Freund,
Higham); which is all about rational approximation

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

V1
→

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

V2
→

∗
∗ ∗
∗ ∗

∗
∗

V3
→

∗
∗
∗
∗
∗

= Λ.

QR algorithm for symmetric A
I Initial reduction to Hessenberg form → tridiagonal

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Q1
→

∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Q2
→

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Q3
→

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗

I QR steps for tridiagonal: O(n) instead of O(n2) per step
I Powerful alternatives available for tridiagonal eigenproblem (divide-conquer

[Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
I Cost: 4

3n
3 flops for eigvals, ≈ 10n3 for eigvecs (store Givens rotations)

I Self advertisement (nonexaminable): spectral divide-and-conquer (w/ Freund,
Higham); which is all about rational approximation

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

V1
→

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

V2
→

∗
∗ ∗
∗ ∗

∗
∗

V3
→

∗
∗
∗
∗
∗

= Λ.

Golub-Kahan for SVD
Apply Householder reflectors from left and right (different ones) to bidiagonalize

A→ B = HL,n · · ·HL,1AHR,1HR,2 · · ·HR,n−2

AHL, 1
→

? ? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

HR, 1
→

? ?

? ? ?

? ? ?

? ? ?

? ? ?

HL, 2
→

? ?

? ? ?

? ?

? ?

? ?

HR, 2
→

? ?

? ?

? ?

? ?

? ?

HL, 3
→

? ?

? ?

? ?

?

?

HL, 4
→ B,

I σi(A) = σi(B)
I Once bidiagonalized,

I Mathematically, do QR alg on BTB (symmetric tridiagonal)
I More elegant: divide-and-conquer [Gu-Eisenstat 1995] or dqds algorithm

[Fernando-Parlett 1994]; nonexaminable
I Cost: ≈ 4mn2 flops for singvals Σ, ≈ 20mn2 flops for singvecs U, V

QZ algorithm for generalised eigenvalue problems
Generalised eigenvalue problem

Ax = λBx, A,B ∈ Cn×n

I A,B given, find eigenvalues λ and eigenvector x
I n eigenvalues, roots of det(A− λB)
I Important case: A,B symmetric, B positive definite: λ all real

QZ algorithm: look for unitary Q,Z s.t. QAZ,QBZ both upper triangular
I then diag(QAZ)/diag(QBZ) are eigenvalues
I Algorithm: first reduce A,B to Hessenberg-triangular form
I then implicitly do QR to B−1A (without inverting B)
I Cost: ≈ 50n3

I See [Golub-Van Loan] for details

Tractable eigenvalue problems
I Standard eigenvalue problems Ax = λx

I symmetric (4/3n3 flops for eigvals, +9n3 for eigvecs)
I nonsymmetric (10n3 flops for eigvals, +15n3 for eigvecs)

I SVD A = UΣV ∗ for A ∈ Cm×n: (8
3mn

2 flops for singvals, +20mn2 for
singvecs)

I Generalized eigenvalue problems Ax = λBx , A,B ∈ Cn×n

I Polynomial eigenvalue problems, e.g. (degree k = 2)
P (λ)x = (λ2A+ λB + C)x = 0 , A,B,C ∈ Cn×n:≈ 20(nk)3

I Nonlinear problems, e.g. N(λ)x = (A exp(λ) +B)x = 0
I often solved via approximating by polynomial N(λ) ≈ P (λ)
I more difficult: A(x)x = λx: eigenvector nonlinearity

Further speedup when structure present (e.g. sparse, low-rank)

