Solving an eigenvalue problem

Given $A \in \mathbb{R}^{n \times n}$ or $\mathbb{C}^{n \times n}$,

 $Ax = \lambda x$

Goal: find all eigenvalues (and eigenvectors) of a matrix

 \blacktriangleright Look for Schur form $A = UTU^*$

We'll describe an algorithm called the QR algorithm that is used universally, e.g. by MATLAB's eig. It

- \blacktriangleright finds all eigenvalues (approximately but reliably) in $O(n^3)$ flops,
- \blacktriangleright is backward stable.

Sister problem: Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, compute SVD $A = U \Sigma V^*$

- \blacktriangleright 'ok' algorithm: eig($A^T A$) to find V, then normalise AV
- \triangleright there's a better algorithm: Golub-Kahan bidiagonalisation

QR algorithm for eigenproblems

Set $A_1 = A$, and

$$
A_1 = Q_1 R_1
$$
, $A_2 = R_1 Q_1$, $A_2 = Q_2 R_2$, $A_3 = R_2 Q_2$, ...

$$
\blacktriangleright \ A_k \text{ are all similar: } A_{k+1} = Q_k^T A_k Q_k
$$

- \triangleright We shall 'show' that *A* → triangular **triangular** (diagonal if *A* normal)
- \triangleright Basically: QR (factorise) \rightarrow RQ (swap) \rightarrow $QR \rightarrow RQ \rightarrow \cdots$

QR algorithm for eigenproblems

Set $A_1 = A_2$ and

$$
A_1 = Q_1 R_1
$$
, $A_2 = R_1 Q_1$, $A_2 = Q_2 R_2$, $A_3 = R_2 Q_2$, ...

$$
\blacktriangleright A_k \text{ are all similar: } A_{k+1} = Q_k^T A_k Q_k
$$

- \triangleright We shall 'show' that $A \rightarrow$ triangular **triangular** (diagonal if A normal)
- Basically: $QR(factorise) \rightarrow RQ(swap) \rightarrow QR \rightarrow RQ \rightarrow \cdots$
- Fundamental work by Francis $(61,62)$ and Kublanovskaya (63)

\blacktriangleright Truly Magical algorithm!

- \triangleright backward stable, as based on orthogonal transforms
- \blacktriangleright always converges (with shifts), but global proof unavailable(!)
- In uses 'shifted inverse power method' (rational functions) without inversions

QR algorithm and power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat. Claims: for $k \ge 1$,

$$
A^{k} = (Q_{1} \cdots Q_{k})(R_{k} \cdots R_{1}) =: Q^{(k)}R^{(k)}, \qquad A_{k+1} = (Q^{(k)})^{T}AQ^{(k)}.
$$

Proof: recall
$$
A_{k+1} = Q_k^T A_k Q_k
$$
, repeat.

Proof by induction: $k = 1$ trivial. Suppose $A^{k-1} = Q^{(k-1)}R^{(k-1)}$. We have

$$
A_k = (Q^{(k-1)})^* A Q^{(k-1)} = Q_k R_k.
$$

Then $AO^{(k-1)} = Q^{(k-1)}Q_kR_k$, and so

$$
A^{k} = AQ^{(k-1)}R^{(k-1)} = Q^{(k-1)}Q_k R_k R^{(k-1)} = Q^{(k)}R^{(k)}\Box
$$

QR algorithm and power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat.

$$
A^{k} = (Q_{1} \cdots Q_{k})(R_{k} \cdots R_{1}) =: Q^{(k)}R^{(k)}, \qquad A_{k+1} = (Q^{(k)})^{T}AQ^{(k)}.
$$

QR factorisation of *A^k* : 'dominated by leading eigenvector' *x*1, where $Ax_1 = \lambda_1 x_1$ (recall power method)

In particular, consider $A^k[1,0,\ldots,0]^T = A^k e_n$:

- $A^k e_n = R^{(k)}(1,1)Q^{(k)}(:,1)$, parallel to 1st column of $Q^{(k)}$
- \blacktriangleright By power method, this implies $Q^{(k)}(:,1) \rightarrow x_1$
- ▶ Hence by $A_{k+1} = (Q^{(k)})^T A Q^{(k)}$, $A_k(:, 1) \rightarrow [\lambda_1, 0, ..., 0]^T$

Progress! But there is much better news

QR algorithm and inverse power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat.

$$
A^{k} = (Q_{1} \cdots Q_{k})(R_{k} \cdots R_{1}) =: Q^{(k)} R^{(k)},
$$

$$
A_{k+1} = (Q^{(k)})^T A Q^{(k)}.
$$

Now take inverse: $A^{-k} = (R^{(k)})^{-1} (Q^{(k)})^*,$ $\mathsf{Conjugate}\; \mathsf{transpose}\colon\thinspace (A^{-k})^* = Q^{(k)}(R^{(k)})^{-*}$

- \Rightarrow QR factorization of matrix $(A^{-k})^*$ with eigvals $r(\lambda_i) = |\lambda_i^{-k}|$
- \Rightarrow Connection also with (unshifted) inverse power method NB no matrix inverse performed
	- \blacktriangleright This means final column of $Q^{(k)}$ converges to minimum left eigenvector x_n with rate $\frac{|\lambda_{n-1}|}{|\lambda_n|}$, hence $A_k(n,:) \to [0,\ldots,0,\lambda_n]$
	- \triangleright (Very) fast convergence if $|\lambda_n| \ll |\lambda_{n-1}|$
	- ▶ Can we force this situation? Yes by shifts

QR algorithm with shifts and shifted inverse power method

QR algorithm with shifts and shifted inverse power method

1.
$$
A_k - s_k I = Q_k R_k
$$
 (QR factorization)
\n2. $A_{k+1} = R_k Q_k + s_k I$, $k \leftarrow k + 1$, repeat.
\n
$$
\prod_{i=1}^k (A - s_i I) = Q^{(k)} R^{(k)} (= (Q_1 \cdots Q_k)(R_k \cdots R_1))
$$

Proof: Suppose true for *k* − 1*.* Then QR alg. computes $(Q^{(k-1)})^*(A - s_k I) Q^{(k-1)} = Q_k R_k$, so $(A - s_k I) Q^{(k-1)} = Q^{(k-1)} Q_k R_k$, hence Π *k* $i=1$ $(A - s_i I) = (A - s_k I)Q^{(k-1)}R^{(k-1)} = Q^{(k-1)}Q_k R_k R^{(k-1)} = Q^{(k)}R^{(k)}$.

 $\textsf{Inverse conjugate transpose: } \prod_{i=1}^k (A - s_i I)^{-*} = Q^{(k)}(R^{(k)})^{-*}$

- ▶ QR factorization of matrix with eigvals $r(\lambda_j) = \prod_{i=1}^k \frac{1}{\lambda_j s_i}$
- Ideally, choose $s_k \approx \lambda_n$

Connection with shifted inverse power method, hence rational approximation

QR algorithm preprocessing

We've seen the QR iterations drives colored entries to 0 (esp. red ones)

- \triangleright Hence $A_{n,n}$ → λ_n , so choosing $s_k = A_{n,n}$ is sensible
- In This reduces $\#\mathsf{QR}$ iterations to $O(n)$ (empirical but reliable estimate)
- \blacktriangleright But each iteration is $O(n^3)$ for QR, overall $O(n^4)$
- \blacktriangleright We next discuss a preprocessing technique to reduce to $O(n^3)$

QR algorithm preprocessing: Hessenberg reduction

To improve cost of QR factorisation, first reduce via orthogonal Householder transformations

A = ∗ *, H*1*A* = ∗ *, H*¹ = *I* − 2*v*1*v T* 1 *, v*¹ = 0 ∗ ∗ ∗ ∗ Then *H*1*AH*¹ = ∗ . Repeat with *H*² = *I* − 2*v*2*v T* 2 *, v*² = [0*,* 0*,* ∗*,* ∗*,* ∗] *T* , ...:

Hessenberg reduction continued

A = ∗ *H*1 → ∗ *H*2 → ∗ *^H*³ → ··· *^Hn*−² [→] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ *.*

- \triangleright QR iterations preserve structure: if $A_1 = QR$ Hessenberg, then so is $A_2 = RQ$
- ightharpoonup using Givens rotations, each QR iter is $O(n^2)$ (not $O(n^3)$)
- ▶ overall shifted QR algorithm cost is $O(n^3)$, $\approx 25n^3$ flops
- **EXECUTE:** Remaining task (done by shifted QR): drive subdiagonal $*$ to 0
- **►** bottom-right $*$ → λ_n , can be used for shift s_k

Deflation

Once bottom-right $|*| < \epsilon$,

and continue with shifted QR on $(n - 1) \times (n - 1)$ block, repeat

QR algorithm in action

QR algorithm: other improvements/simplifications

- \blacktriangleright Double-shift strategy for $A \in \mathbb{R}^{n \times n}$
	- $(A sI)(A \overline{s}I) = QR$ using only real arithmetic
- **In Aggressive early deflation Example 2002 I** Braman-Byers-Mathias 2002]

- **►** Examine lower-right (say 100×100) block instead of $(n, n 1)$ element
- \triangleright dramatic speedup ($\approx \times 10$)
- I Balancing *A* ← *DAD*−¹ , *D*: diagonal
	- **►** reduce $||DAD^{-1}||$: better-conditioned eigenvalues
- \blacktriangleright For nonsymmetric A, global convergence is NOT established
	- \triangleright of course it always converges in practice.. another big open problem in numerical linear algebra

QR algorithm for symmetric *A*

Initial reduction to Hessenberg form \rightarrow tridiagonal

- \blacktriangleright QR steps for tridiagonal: $O(n)$ instead of $O(n^2)$ per step
- I Powerful alternatives available for tridiagonal eigenproblem (divide-conquer [Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
- ▶ Cost: $\frac{4}{3}n^3$ flops for eigvals, $\approx 10n^3$ for eigvecs (store Givens rotations)

QR algorithm for symmetric *A*

Initial reduction to Hessenberg form \rightarrow tridiagonal

 $A =$ \vert $\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$ ∗ \mathbf{L} $\begin{array}{c} \n\end{array}$ $\frac{Q_1}{\rightarrow}$ \vert ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ \mathbf{I} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ Q_2 ^{\rightarrow} \vert $\overline{}$ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ \mathbf{I} $\frac{Q_3}{\rightarrow}$ \mathbf{E} $\overline{}$ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ \mathbf{L} $\frac{1}{2}$

 \blacktriangleright QR steps for tridiagonal: $O(n)$ instead of $O(n^2)$ per step

- \triangleright Powerful alternatives available for tridiagonal eigenproblem (divide-conquer [Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
- ▶ Cost: $\frac{4}{3}n^3$ flops for eigvals, $\approx 10n^3$ for eigvecs (store Givens rotations)
- \triangleright Self advertisement (nonexaminable): spectral divide-and-conquer (w/ Freund, Higham); which is all about rational approximation

A = ∗ *V*1→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ *V*2→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ *V*3→ ∗ ∗ ∗ ∗ ∗ = Λ*.*

Golub-Kahan for SVD

Apply Householder reflectors from left and right (different ones) to **bidiagonalize**

$$
A \rightarrow B = H_{L,n} \cdots H_{L,1} A H_{R,1} H_{R,2} \cdots H_{R,n-2}
$$

 \blacktriangleright $\sigma_i(A) = \sigma_i(B)$

 \triangleright Once bidiagonalized,

- \blacktriangleright Mathematically, do QR alg on $B^T B$ (symmetric tridiagonal)
- ▶ More elegant: divide-and-conquer [Gu-Eisenstat 1995] or dqds algorithm [Fernando-Parlett 1994]; nonexaminable

 \triangleright Cost: $\approx 4mn^2$ flops for singvals Σ , $\approx 20mn^2$ flops for singvecs *U*, *V*

QZ algorithm for generalised eigenvalue problems

Generalised eigenvalue problem

$$
Ax = \lambda Bx, \qquad A, B \in \mathbb{C}^{n \times n}
$$

- \blacktriangleright *A, B* given, find eigenvalues λ and eigenvector x
- \triangleright *n* eigenvalues, roots of $det(A \lambda B)$
- Important case: A, B symmetric, B positive definite: λ all real

QZ algorithm: look for unitary *Q, Z* s.t. *QAZ, QBZ* both upper triangular

- ighthen diag(QAZ)/diag(QBZ) are eigenvalues
- \blacktriangleright Algorithm: first reduce A, B to Hessenberg-triangular form
- \triangleright then implicitly do QR to $B^{-1}A$ (without inverting *B*)
- \blacktriangleright Cost: ≈ $50n^3$
- \triangleright See [Golub-Van Loan] for details

Tractable eigenvalue problems

- Standard eigenvalue problems $Ax = \lambda x$
	- Symmetric $(4/3n^3)$ flops for eigvals, $+9n^3$ for eigvecs)
	- **In** nonsymmetric $(10n^3)$ flops for eigvals, $+15n^3$ for eigvecs)
- ► SVD $A = U\Sigma V^*$ for $A \in \mathbb{C}^{m \times n}$: $(\frac{8}{3}mn^2)$ flops for singvals, $+20mn^2$ for singvecs)
- \blacktriangleright Generalized eigenvalue problems $\overline{Ax} = \lambda \overline{Bx}$, $A, B \in \mathbb{C}^{n \times n}$
- \blacktriangleright Polynomial eigenvalue problems, e.g. (degree $k = 2$) $P(\lambda)x = (\lambda^2 A + \lambda B + C)x = 0$, $A, B, C \in \mathbb{C}^{n \times n} \approx 20 (nk)^3$

• Nonlinear problems, e.g. $N(\lambda)x = (A \exp(\lambda) + B)x = 0$

- \triangleright often solved via approximating by polynomial $N(\lambda) \approx P(\lambda)$
- **If** more difficult: $A(x)x = \lambda x$: eigenvector nonlinearity

Further speedup when structure present (e.g. sparse, low-rank)