Numerical Linear Algebra
 Sheet 2 - MT20

 LU, QR, linear systems and least-squares

 LU, QR, linear systems and least-squares}

This sheet is due 9am two weekdays before the class (Thursday if class is on Monday). Please submit a single pdf file, not separate ones.

1. Show that computing an LU factorization of $A \in \mathbb{R}^{n \times n}$ requires $\frac{2}{3} n^{3}+O\left(n^{2}\right)$ operations. Show that the leading term $\frac{2}{3} n^{3}$ does not change if pivots are used.
2. Compute the leading term in the operation count of QR factorisation of an $m \times$ $n(m \geq n)$ matrix via Householder QR. Do the same for Gram-Schmidt.
3. Show that a nonsingular $A \in \mathbb{R}^{n \times n}$ has a pivoted LU factorisation, i.e., there exists a permutation matrix P s.t. $P A=L U$.
4. (a) Show that the $L U$ factorisation $A=L U$ of a nonsingular $A \in \mathbb{R}^{n \times n}$, if it exists, is unique if one imposes that L 's diagonal entries are all 1 . (FYI $A=L U$ exists if the leading pricipal submatrices $A(1: k, 1: k)$ are nonsingular for all k)
(b) Show that the Cholesky factorisation $A=R^{T} R$ of a symmetric positive definite $A \in \mathbb{R}^{n \times n}$ is unique if we impose that R has positive diagonal entries.
(c) Show that the QR factorisation $A=Q R \in \mathbb{R}^{m \times n}$ of a full rank matrix is unique if we impose that R has positive diagonal entries.
5. Suppose $A \in \mathbb{R}^{n \times n}$ is tridiagonal $\left(A_{i j}=0\right.$ if $\left.|i-j|>1\right)$, and it has an LU factorisation $A=L U$ without pivots.

Show that L, U are both bidiagonal $\left(L_{i j}=U_{j i}=0\right.$ if $\left.i>j+1\right)$.
Hence show that a linear system $A x=b$ can be solved in $O(n)$ operations.
What if QR is used to solve $A x=b$? Comment briefly.
6. If $A x=b$ and $(A+\delta A)(x+\delta x)=b$ show that

$$
\frac{\|\delta x\|}{\|x+\delta x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\delta A\|}{\|A\|}
$$

7. For the linear least squares problem: $\min _{x}\|A x-b\|_{2}$, show that the solution obtained by QR factorisation of A is the same as the vector y obtained by solving the (square) linear system of equations $A^{\mathrm{T}} A y=A^{\mathrm{T}} b$ (the "normal equations").
Can you devise a way of solving the linear least squares problem by employing the SVD?
8. (Computational) By using a built-in code or your own implementation of LU (with pivots) and QR
(a) Solve $A x=b$ for an $n \times n$ random matrix (randn(n) in matlab) and random vector b. Take $n=k \times 1000$ for $k=1,2, \ldots$, (as large as feasible) and compare the running time and residual $\|A x-b\| /\|b\|$.
(b) Examine the stability of QR and LU . For the same A, compute $\|A-Q R\|_{2} /\|A\|_{2}$ and $\|P A-L U\|_{2} /\|A\|_{2}$, and report your findings. (if possible, also try LU without pivots $\left.\|A-L U\|_{2} /\|A\|_{2}\right)$
9. (Optional) Let $A \in \mathbb{R}^{n \times n}$ be partitioned as $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where $A_{11} \in \mathbb{R}^{k \times k}$ is nonsingular.
(a) Verify that

$$
\left[\begin{array}{cc}
I_{k} & \\
-A_{21} A_{11}^{-1} & I_{n-k}
\end{array}\right] A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]
$$

The (2,2)-block $A_{22}-A_{21} A_{11}^{-1} A_{12}$ is called the Schur complement of A_{11} in A.
(b) Consider running k steps of the algorithm for LU factorisation (suppose this can be done without pivots). Show that the remaining $(n-k) \times(n-k)$ 'active matrix' is equal to the Schur complement $A_{22}-A_{21} A_{11}^{-1} A_{12}$.

