
Eigenvalue problem Ax = ⁄x
First of all, Ax = ⁄x no explicit solution (neither ⁄ nor x); huge di�erence from

Ax = b for which x = A
≠1

b

I Eigenvalues are roots of characteristic polynomial

I For any polynomial p, ÷ (infinitely many) matrices whose eigvals are roots of p

I So no finite-step algorithm exists for Ax = ⁄x
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Eigenvalue algorithms are necessarily iterative and approximate

I Same for SVD, as ‡i(A) =
Ò

⁄i(AT A)
I But this doesn’t mean they’re inaccurate!

Usual goal: compute the Schur decomposition A = UTU
ú
: U unitary, T upper

triangular

I For normal matrices A
ú
A = AA

ú
, automatically diagonalised (T diagonal)

I For nonnormal A, if diagonalisation A = X�X
≠1

really necessary, done via

Sylvester equations but nonorthogonal/unstable (nonexaminable)



Schur decomposition
Let A œ Cn◊n

(square arbitrary matrix). Then ÷ unitary U œ Cn◊n
s.t.

A = UTU
ú

,

with T upper triangular.

I eig(A) = eig(T ) = diag(T )
I T diagonal i� A normal A

ú
A = AA

ú

Proof:

Let Av = ⁄1v and find U1 = [v1, V‹] unitary. Then

AU1 = U1

S

WWU

ú ú ú ú ú
ú ú ú ú
ú ú ú ú
ú ú ú ú
ú ú ú ú

T

XXV … U
ú
1 AU1 =

S

WWU

ú ú ú ú ú
ú ú ú ú
ú ú ú ú
ú ú ú ú
ú ú ú ú

T

XXV. Repeat on the lower-right

(n ≠ 1) ◊ (n ≠ 1) part to get U
ú
n≠1U

ú
n≠2 . . . U

ú
1 AU1U2 . . . Un≠1 = T .
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Recap: Matrix decompositions
I SVD A = U�V

T

I Eigenvalue decomposition A = X�X
≠1

I Normal: X unitary X
ú
X = I

I Symmetric: X unitary and � real

I Jordan decomposition: A = XJX
≠1

, J = diag(

S

WU

⁄i 1

⁄i
. . .

. . . 1
⁄i

T

XV)

I Schur decomposition A = QTQ
ú
: Q orthogonal, T upper triangular

I QR: Q orthonormal, U upper triangular

I LU: L lower triangular, U upper triangular

I QZ for Ax = ⁄Bx: (genearlised eigenvalue problem) Q, Z orthogonal s.t.

QAZ, QBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available



Recap: Matrix decompositions
I SVD A = U�V

T

I Eigenvalue decomposition A = X�X
≠1

I Normal: X unitary X
ú
X = I

I Symmetric: X unitary and � real

I Jordan decomposition: A = XJX
≠1

, J = diag(

S

WU

⁄i 1

⁄i
. . .

. . . 1
⁄i

T

XV)

I Schur decomposition A = QTQ
ú
: Q orthogonal, T upper triangular

I QR: Q orthonormal, U upper triangular

I LU: L lower triangular, U upper triangular

I QZ for Ax = ⁄Bx: (genearlised eigenvalue problem) Q, Z orthogonal s.t.

QAZ, QBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available



Power method for Ax = ⁄x
x œ Rn :=random vector, x = Ax, x = x

ÎxÎ , ⁄ = x
T

Ax, repeat

I Convergence analysis: suppose A is diagonalisable (generic assumption). We can

write x0 = qn
i=1 civi, Avi = ⁄ivi with |⁄1| > |⁄2| > · · · . Then after k iterations,

x = C

nÿ

i=1

3
⁄i

⁄1

4k

civi æ Cc1v1 as k æ Œ

I Converges geometrically (⁄, x) æ (⁄1, x1) with linear rate |⁄2|
|⁄1|

I What does this imply about A
n = QR as n æ Œ? First vector of Q æ v1

Notes:

I Google pagerank & Markov chain linked to power method

I As we’ll see, power method is basis for refined algs (QR algorithm, Krylov

methods (Lanczos, Arnoldi,...))
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Why compute eigenvalues? Google PageRank
’Importance’ of websites via

dominant eigenvector of

column-stochastic matrix

A = –P + (1 ≠ –)

S

WWU

1 · · · 1
.
.
.

. . .
.
.
.

1 · · · 1

T

XXV

P : adjacency matrix, – œ (0, 1)
image from wikipedia

Google does (did) a few steps of Power method: with initial guess x0, k = 0, 1, . . .

1. xk+1 = Axk

2. xk+1 = xk+1/Îxk+1Î2, k Ω k + 1, repeat.

I xk æ PageRank vector v1 : Av1 = ⁄1v1



Inverse power method
Inverse power method: x := (A ≠ µI)x, x = x/ÎxÎ
I Converges with improved linear rate |⁄‡(2)≠µ|

|⁄‡(1)≠µ| to eigval closest to µ (‡:

permutation)

I µ can change adaptively with the iterations. The choice µ := x
T

Ax gives

Rayleigh quotient iteration, with quadratic convergence

ÎAx
(k+1) ≠ ⁄

(k+1)
x

(k+1)Î = O(ÎAx
(k) ≠ ⁄

(k)
x

(k)Î2) (cubic if A symmetric)
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