Eigenvalue problem $A x=\lambda x$

First of all, $A x=\lambda x$ no explicit solution (neither λ nor x); huge difference from $A x=b$ for which $x=A^{-1} b$

- Eigenvalues are roots of characteristic polynomial
- For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p

Eigenvalue problem $A x=\lambda x$

First of all, $A x=\lambda x$ no explicit solution (neither λ nor x); huge difference from $A x=b$ for which $x=A^{-1} b$

- Eigenvalues are roots of characteristic polynomial
- For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p
- Let $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{i} \in \mathbb{C}$. Then $p(\lambda)=0 \Leftrightarrow \lambda$ eigenvalue of

$$
C=\left[\begin{array}{ccccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{1} & -a_{0} \\
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 1 & 0
\end{array}\right] \in \mathbb{C}^{n \times n}
$$

Eigenvalue problem $A x=\lambda x$

First of all, $A x=\lambda x$ no explicit solution (neither λ nor x); huge difference from $A x=b$ for which $x=A^{-1} b$

- Eigenvalues are roots of characteristic polynomial
- For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p
- So no finite-step algorithm exists for $A x=\lambda x$

Eigenvalue algorithms are necessarily iterative and approximate

- Same for SVD, as $\sigma_{i}(A)=\sqrt{\lambda_{i}\left(A^{T} A\right)}$
- But this doesn't mean they're inaccurate!

Usual goal: compute the Schur decomposition $A=U T U^{*}: U$ unitary, T upper triangular

- For normal matrices $A^{*} A=A A^{*}$, automatically diagonalised (T diagonal)
- For nonnormal A, if diagonalisation $A=X \Lambda X^{-1}$ really necessary, done via Sylvester equations but nonorthogonal/unstable (nonexaminable)

Schur decomposition

Let $A \in \mathbb{C}^{n \times n}$ (square arbitrary matrix). Then \exists unitary $U \in \mathbb{C}^{n \times n}$ s.t.

$$
A=U T U^{*},
$$

with T upper triangular.

- $\operatorname{eig}(A)=\operatorname{eig}(T)=\operatorname{diag}(T)$
- T diagonal iff A normal $A^{*} A=A A^{*}$

Proof:

Schur decomposition

Let $A \in \mathbb{C}^{n \times n}$ (square arbitrary matrix). Then \exists unitary $U \in \mathbb{C}^{n \times n}$ s.t.

$$
A=U T U^{*},
$$

with T upper triangular.

- $\operatorname{eig}(A)=\operatorname{eig}(T)=\operatorname{diag}(T)$
- T diagonal iff A normal $A^{*} A=A A^{*}$

Proof: Let $A v=\lambda_{1} v$ and find $U_{1}=\left[v_{1}, V_{\perp}\right]$ unitary. Then

$$
\begin{aligned}
& A U_{1}=U_{1}\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] \Leftrightarrow U_{1}^{*} A U_{1}=\left[\begin{array}{rrrr}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right] \text {. Repeat on the lower-right } \\
& (n-1) \times(n-1) \text { part to get } U_{n-1}^{*} U_{n-2}^{*} \cdots U_{1}^{*} A U_{1} U_{2} \ldots U_{n-1}=T .
\end{aligned}
$$

Recap: Matrix decompositions

- SVD $A=U \Sigma V^{T}$
- Eigenvalue decomposition $A=X \Lambda X^{-1}$
- Normal: X unitary $X^{*} X=I$
- Symmetric: X unitary and Λ real
- Jordan decomposition: $A=X J X^{-1}, J=\operatorname{diag}\left(\left[\begin{array}{cccc}\lambda_{i} & 1 & & \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i}\end{array}\right]\right)$
- Schur decomposition $A=Q T Q^{*}: Q$ orthogonal, T upper triangular
- QR: Q orthonormal, U upper triangular
- LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available

Recap: Matrix decompositions

- SVD $A=U \Sigma V^{T}$
- Eigenvalue decomposition $A=X \Lambda X^{-1}$
- Normal: X unitary $X^{*} X=I$
- Symmetric: X unitary and Λ real
- Jordan decomposition: $A=X J X^{-1}, J=\operatorname{diag}\left(\left[\begin{array}{cccc}\lambda_{i} & 1 & & \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i}\end{array}\right]\right)$
- Schur decomposition $A=Q T Q^{*}: Q$ orthogonal, T upper triangular
- QR: Q orthonormal, U upper triangular
- LU: L lower triangular, U upper triangular
- QZ for $A x=\lambda B x$: (genearlised eigenvalue problem) Q, Z orthogonal s.t. $Q A Z, Q B Z$ are both upper triangular

Red: Orthogonal decompositions, stable computation available

Power method for $A x=\lambda x$

$x \in \mathbb{R}^{n}:=$ random vector, $x=A x, x=\frac{x}{\|x\|}, \hat{\lambda}=x^{T} A x$, repeat

Power method for $A x=\lambda x$

$x \in \mathbb{R}^{n}:=$ random vector, $x=A x, x=\frac{x}{\|x\|}, \hat{\lambda}=x^{T} A x$, repeat

- Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_{0}=\sum_{i=1}^{n} c_{i} v_{i}, A v_{i}=\lambda_{i} v_{i}$ with $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots$. Then after k iterations,

$$
x=C \sum_{i=1}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} c_{i} v_{i} \rightarrow C c_{1} v_{1} \quad \text { as } k \rightarrow \infty
$$

- Converges geometrically $(\lambda, x) \rightarrow\left(\lambda_{1}, x_{1}\right)$ with linear rate $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$
- What does this imply about $A^{k}=Q R$ as $k \rightarrow \infty$? First vector of $Q \rightarrow v_{1}$

Power method for $A x=\lambda x$

$x \in \mathbb{R}^{n}:=$ random vector, $x=A x, x=\frac{x}{\|x\|}, \hat{\lambda}=x^{T} A x$, repeat

- Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_{0}=\sum_{i=1}^{n} c_{i} v_{i}, A v_{i}=\lambda_{i} v_{i}$ with $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots$. Then after k iterations,

$$
x=C \sum_{i=1}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} c_{i} v_{i} \rightarrow C c_{1} v_{1} \quad \text { as } k \rightarrow \infty
$$

- Converges geometrically $(\lambda, x) \rightarrow\left(\lambda_{1}, x_{1}\right)$ with linear rate $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$
- What does this imply about $A^{k}=Q R$ as $k \rightarrow \infty$? First vector of $Q \rightarrow v_{1}$

Notes:

- Google pagerank \& Markov chain linked to power method
- As we'll see, power method is basis for refined algs (QR algorithm, Krylov methods (Lanczos, Arnoldi,...))

Why compute eigenvalues? Google PageRank

'Importance' of websites via dominant eigenvector of column-stochastic matrix

$$
A=\alpha P+(1-\alpha)\left[\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right]
$$

P : adjacency matrix, $\alpha \in(0,1)$

image from wikipedia

Google does (did) a few steps of Power method: with initial guess $x_{0}, k=0,1, \ldots$

1. $x_{k+1}=A x_{k}$
2. $x_{k+1}=x_{k+1} /\left\|x_{k+1}\right\|_{2}, \quad k \leftarrow k+1$, repeat.

- $x_{k} \rightarrow$ PageRank vector $v_{1}: A v_{1}=\lambda_{1} v_{1}$

Inverse power method

Inverse (shift-and-invert) power method: $x:=(A-\mu I)^{-1} x, x=x /\|x\|$

- Converges with improved linear rate $\frac{\left|\lambda_{\sigma(2)}-\mu\right|}{\left|\lambda_{\sigma(1)}-\mu\right|}$ to eigval closest to μ (σ : permutation)

Inverse power method

Inverse (shift-and-invert) power method: $x:=(A-\mu I)^{-1} x, x=x /\|x\|$

- Converges with improved linear rate $\frac{\left|\lambda_{\sigma(2)}-\mu\right|}{\left|\lambda_{\sigma(1)}-\mu\right|}$ to eigval closest to μ (σ : permutation)
- μ can change adaptively with the iterations. The choice $\mu:=x^{T} A x$ gives Rayleigh quotient iteration, with quadratic convergence $\left\|A x^{(k+1)}-\lambda^{(k+1)} x^{(k+1)}\right\|=O\left(\left\|A x^{(k)}-\lambda^{(k)} x^{(k)}\right\|^{2}\right)$ (cubic if A symmetric)

