
Eigenvalue problem Ax = λx
First of all, Ax = λx no explicit solution (neither λ nor x); huge difference from
Ax = b for which x = A−1b

I Eigenvalues are roots of characteristic polynomial
I For any polynomial p, ∃ (infinitely many) matrices whose eigvals are roots of p

I So no finite-step algorithm exists for Ax = λx
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I Eigenvalues are roots of characteristic polynomial
I For any polynomial p, ∃ (infinitely many) matrices whose eigvals are roots of p
I Let p(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ C. Then
p(λ) = 0⇔ λ eigenvalue of

C =



−an−1 −an−2 . . . −a1 −a0
1

1
. . .

1 0


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Eigenvalue algorithms are necessarily iterative and approximate
I Same for SVD, as σi(A) =

√
λi(ATA)

I But this doesn’t mean they’re inaccurate!
Usual goal: compute the Schur decomposition A = UTU∗: U unitary, T upper
triangular
I For normal matrices A∗A = AA∗, automatically diagonalised (T diagonal)
I For nonnormal A, if diagonalisation A = XΛX−1 really necessary, done via

Sylvester equations but nonorthogonal/unstable (nonexaminable)



Schur decomposition
Let A ∈ Cn×n (square arbitrary matrix). Then ∃ unitary U ∈ Cn×n s.t.

A = UTU∗ ,
with T upper triangular.
I eig(A) = eig(T ) = diag(T )
I T diagonal iff A normal A∗A = AA∗

Proof:

Let Av = λ1v and find U1 = [v1, V⊥] unitary. Then

AU1 = U1


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⇔ U∗1AU1 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. Repeat on the lower-right

(n− 1)× (n− 1) part to get U∗n−1U
∗
n−2 . . . U

∗
1AU1U2 . . . Un−1 = T .



Schur decomposition
Let A ∈ Cn×n (square arbitrary matrix). Then ∃ unitary U ∈ Cn×n s.t.

A = UTU∗ ,
with T upper triangular.
I eig(A) = eig(T ) = diag(T )
I T diagonal iff A normal A∗A = AA∗

Proof: Let Av = λ1v and find U1 = [v1, V⊥] unitary. Then

AU1 = U1


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⇔ U∗1AU1 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. Repeat on the lower-right

(n− 1)× (n− 1) part to get U∗n−1U
∗
n−2 . . . U

∗
1AU1U2 . . . Un−1 = T .



Recap: Matrix decompositions
I SVD A = UΣV T

I Eigenvalue decomposition A = XΛX−1

I Normal: X unitary X∗X = I
I Symmetric: X unitary and Λ real

I Jordan decomposition: A = XJX−1, J = diag(


λi 1

λi

. . .

. . . 1
λi

)

I Schur decomposition A = QTQ∗: Q orthogonal, T upper triangular
I QR: Q orthonormal, U upper triangular
I LU: L lower triangular, U upper triangular

I QZ for Ax = λBx: (genearlised eigenvalue problem) Q,Z orthogonal s.t.
QAZ,QBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available
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Power method for Ax = λx
x ∈ Rn :=random vector, x = Ax, x = x

‖x‖ , λ̂ = xTAx, repeat

I Convergence analysis: suppose A is diagonalisable (generic assumption). We can
write x0 =

∑n
i=1 civi, Avi = λivi with |λ1| > |λ2| > · · · . Then after k iterations,

x = C
n∑
i=1

(
λi
λ1

)k
civi → Cc1v1 as k →∞

I Converges geometrically (λ, x)→ (λ1, x1) with linear rate |λ2|
|λ1|

I What does this imply about Ak = QR as k →∞? First vector of Q→ v1

Notes:
I Google pagerank & Markov chain linked to power method
I As we’ll see, power method is basis for refined algs (QR algorithm, Krylov

methods (Lanczos, Arnoldi,...))
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Why compute eigenvalues? Google PageRank
’Importance’ of websites via
dominant eigenvector of
column-stochastic matrix

A = αP + (1− α)


1 · · · 1
...

. . .
...

1 · · · 1


P : adjacency matrix, α ∈ (0, 1)

image from wikipedia

Google does (did) a few steps of Power method: with initial guess x0, k = 0, 1, . . .
1. xk+1 = Axk
2. xk+1 = xk+1/‖xk+1‖2, k ← k + 1, repeat.

I xk → PageRank vector v1 : Av1 = λ1v1



Inverse power method
Inverse (shift-and-invert) power method: x := (A− µI)−1x, x = x/‖x‖
I Converges with improved linear rate |λσ(2)−µ|

|λσ(1)−µ|
to eigval closest to µ (σ:

permutation)

I µ can change adaptively with the iterations. The choice µ := xTAx gives
Rayleigh quotient iteration, with quadratic convergence
‖Ax(k+1) − λ(k+1)x(k+1)‖ = O(‖Ax(k) − λ(k)x(k)‖2) (cubic if A symmetric)
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