Eigenvalue problem Ax = \x
First of all, Az = Az no explicit solution (neither A nor z); huge difference from
Ax = b for which z = A~1b

> Eigenvalues are roots of characteristic polynomial
» For any polynomial p, 3 (infinitely many) matrices whose eigvals are roots of p



Eigenvalue problem Ax = \x
First of all, Az = Az no explicit solution (neither A nor z); huge difference from
Ax = b for which z = A~ '
> Eigenvalues are roots of characteristic polynomial
» For any polynomial p, 3 (infinitely many) matrices whose eigvals are roots of p
> Let p(z) = 2" + ap_12" ' + -+ ayx + ag, a; € C. Then
p(A) = 0 < X eigenvalue of

—Ap—-1 —Ap—2 ... —aip —ao
1
C = 1 e Cnxn




Eigenvalue problem Ax = \x
First of all, Az = Az no explicit solution (neither A nor z); huge difference from
Ax = b for which z = A~ '
> Eigenvalues are roots of characteristic polynomial
» For any polynomial p, 3 (infinitely many) matrices whose eigvals are roots of p
» So no finite-step algorithm exists for Ax = A\x

Eigenvalue algorithms are necessarily iterative and approximate
» Same for SVD, as 0;(A) = /N (AT A)
» But this doesn't mean they're inaccurate!

Usual goal: compute the Schur decomposition A = UTU*: U unitary, T upper
triangular

» For normal matrices A*A = AA*, automatically diagonalised (7" diagonal)
» For nonnormal A, if diagonalisation A = XAX ! really necessary, done via
Sylvester equations but nonorthogonal /unstable (nonexaminable)



Schur decomposition
Let A € C™*™ (square arbitrary matrix). Then 3 unitary U € C"*" s.t.

A=UTU~"

with T upper triangular.

> eig(A) = eig(T) = diag(T)

» T diagonal iff A normal A*A = AA*
Proof:



Schur decomposition

Let A € C™*™ (square arbitrary matrix). Then 3 unitary U € C"*" s.t.

A=UTU~"

with T upper triangular.

> eig(A) = eig(T) = diag(T)

» T diagonal iff A normal A*A = AA*
Proof: Let Av = A\jv and find U; = [v1, V] unitary.

* *

AU, = U,y

* X ¥ * %

*
*
*

-O*%***

(n—1)x (n—1)

*

*

*

*

*

& U AU, =

*

* * ¥ %

*

*

I S

*
*
*
*
*

*

EE

. Then

. Repeat on the lower-right

arttoget Uy _U)_o.. UfAU Uy ... Uy =T.



Recap: Matrix decompositions

» SVD A=UxVT

» Eigenvalue decomposition A = XAX !
» Normal: X unitary X*X =1
» Symmetric: X unitary and A real

> Jordan decomposition: A = XJX!, J=diag(| > ~ |)
o
A

» Schur decomposition A = QT'Q*: Q orthogonal, T upper trilangular
» QR: @ orthonormal, U upper triangular
» LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available



Recap

v

vVvyyvyy

: Matrix decompositions

SVD A=UxVvT

Eigenvalue decomposition A = XA X!
» Normal: X unitary X*X =1
» Symmetric: X unitary and A real

Jordan decomposition: A = XJX !, J = diag( A )
N
A

Schur decomposition A = QT'Q*: @ orthogonal, T upper trilangular
QR: @ orthonormal, U upper triangular

LU: L lower triangular, U upper triangular

QZ for Ax = ABux: (genearlised eigenvalue problem) @, Z orthogonal s.t.
QAZ,QQBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available



Power method for Az = \x

x € R" :=random vector, z = Ax, x = ”i—” A= 2T Az, repeat



Power method for Az = \x
x € R" :=random vector, z = Ax, x = ”ﬁ—” A= 2T Az, repeat
» Convergence analysis: suppose A is diagonalisable (generic assumption). We can
write o = Y i ¢v;, Av; = \jv; with [A1] > |A2| > ---. Then after k iterations,
T = Czn: (?)kczvz — Cciv; ask — o0
i=1 M

|A2]
[A1]

» What does this imply about A* = QR as k — oco? First vector of Q — vy

» Converges geometrically (A, z) — (A1, z1) with linear rate



Power method for Ax = \x
x € R" :=random vector, z = Ax, x = ”ﬁ—” A= 2T Az, repeat

» Convergence analysis: suppose A is diagonalisable (generic assumption). We can
write o = Y i ¢v;, Av; = \jv; with [A1] > |A2| > ---. Then after k iterations,

x:C’Z()\l> cv; — Ccqvy as k — o
i=1

» Converges geometrically (A, z) — (A1, z1) with linear rate %

» What does this imply about A* = QR as k — oco? First vector of Q — vy

Notes:

» Google pagerank & Markov chain linked to power method
> As we'll see, power method is basis for refined algs (QR algorithm, Krylov
methods (Lanczos, Arnoldi,...))



Why compute eigenvalues? Google PageRank

'Importance’ of websites via
dominant eigenvector of
column-stochastic matrix

1 .- 1

A=aP+(1—-a)

r -1 image from wikipedia
P: adjacency matrix, a € (0,1)

Google does (did) a few steps of Power method: with initial guess xg, k =0,1,...

1. Lh+1 = Aack
2. g1 = Trt1/||Tps1ll2, k< k+ 1, repeat.

» 1z, — PageRank vector vy : Avy = Ajvy



Inverse power method

Inverse (shift-and-invert) power method: z := (A — ul) 'z, 2 = x/||z||

Ao (2)—Hl

P to eigval closest to p (o

» Converges with improved linear rate
permutation)



Inverse power method

Inverse (shift-and-invert) power method: z := (A — ul) 'z, 2 = x/||z||

Ao (2)—Hl

» Converges with improved linear rate X (1) —H]

to eigval closest to p (o
permutation)

» /i can change adaptively with the iterations. The choice u := 27 Az gives
Rayleigh quotient iteration, with quadratic convergence
| Azt — NEHD (4] = O(]| Az®) — AXF) 2(R)|12) (cubic if A symmetric)



