Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- Eigenvalues are roots of characteristic polynomial
- ▶ For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p

Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- Eigenvalues are roots of characteristic polynomial
- For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p

• Let
$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$
, $a_i \in \mathbb{C}$. Then $p(\lambda) = 0 \Leftrightarrow \lambda$ eigenvalue of

Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- Eigenvalues are roots of characteristic polynomial
- ▶ For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p
- So no finite-step algorithm exists for $Ax = \lambda x$

Eigenvalue algorithms are necessarily iterative and approximate

- Same for SVD, as $\sigma_i(A) = \sqrt{\lambda_i(A^T A)}$
- But this doesn't mean they're inaccurate!

Usual goal: compute the Schur decomposition $A = UTU^{\ast} : \ U$ unitary, T upper triangular

- ▶ For normal matrices $A^*A = AA^*$, automatically diagonalised (*T* diagonal)
- ► For nonnormal A, if diagonalisation $A = X\Lambda X^{-1}$ really necessary, done via Sylvester equations but nonorthogonal/unstable (nonexaminable)

Schur decomposition

Let $A \in \mathbb{C}^{n \times n}$ (square arbitrary matrix). Then \exists unitary $U \in \mathbb{C}^{n \times n}$ s.t.

$$A = UTU^*,$$

with T upper triangular.

Proof:

Schur decomposition

Let $A \in \mathbb{C}^{n \times n}$ (square arbitrary matrix). Then \exists unitary $U \in \mathbb{C}^{n \times n}$ s.t.

$$A = UTU^*,$$

with T upper triangular.

Recap: Matrix decompositions

- $\blacktriangleright \text{ SVD } A = U\Sigma V^T$
- Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - Symmetric: X unitary and Λ real
- ► Jordan decomposition: $A = XJX^{-1}$, $J = \text{diag}(\begin{vmatrix} \lambda_i & 1 & \dots & \lambda_i \\ & \lambda_i & \ddots & \ddots \\ & & \ddots & 1 \end{vmatrix}$)
- **Schur decomposition** $A = QTQ^*$: Q orthogonal, T upper triangular
- ▶ QR: Q orthonormal, U upper triangular
- ▶ LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available

Recap: Matrix decompositions

- $\blacktriangleright \text{ SVD } A = U\Sigma V^T$
- Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - Symmetric: X unitary and Λ real

► Jordan decomposition: $A = XJX^{-1}$, $J = \text{diag}(\begin{vmatrix} \lambda_i & 1 & \dots & \lambda_i \\ & \lambda_i & \ddots & \ddots \\ & & \ddots & 1 \end{vmatrix}$)

- Schur decomposition $A = QTQ^*$: Q orthogonal, T upper triangular
- ▶ QR: Q orthonormal, U upper triangular
- ▶ LU: L lower triangular, U upper triangular
- ▶ QZ for $Ax = \lambda Bx$: (genearlised eigenvalue problem) Q, Z orthogonal s.t. QAZ, QBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available

Power method for $Ax = \lambda x$

$$x \in \mathbb{R}^n :=$$
random vector, $x = Ax$, $x = rac{x}{\|x\|}$, $\hat{\lambda} = x^T Ax$, repeat

Power method for $Ax = \lambda x$

- $x\in \mathbb{R}^n:=$ random vector, x=Ax, $x=\frac{x}{\|x\|}$, $\hat{\lambda}=x^TAx$, repeat
 - Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations, $x = C \sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to Cc_1 v_1$ as $k \to \infty$
 - Converges geometrically $(\lambda, x) \to (\lambda_1, x_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
 - What does this imply about $A^k = QR$ as $k \to \infty$? First vector of $Q \to v_1$

Power method for $Ax = \lambda x$

- $x \in \mathbb{R}^n:=$ random vector, x=Ax, $x=\frac{x}{\|x\|}$, $\hat{\lambda}=x^TAx$, repeat
 - Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations, $x = C \sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to Cc_1 v_1$ as $k \to \infty$
 - Converges geometrically $(\lambda, x) \to (\lambda_1, x_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
 - What does this imply about $A^k = QR$ as $k \to \infty$? First vector of $Q \to v_1$

Notes:

- Google pagerank & Markov chain linked to power method
- As we'll see, power method is basis for refined algs (QR algorithm, Krylov methods (Lanczos, Arnoldi,...))

Why compute eigenvalues? Google PageRank

'Importance' of websites via dominant eigenvector of column-stochastic matrix

$$A = \alpha P + (1 - \alpha) \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

P: adjacency matrix, $\alpha \in (0, 1)$

image from wikipedia

Google does (did) a few steps of Power method: with initial guess x_0 , k = 0, 1, ...

1.
$$x_{k+1} = Ax_k$$

2. $x_{k+1} = x_{k+1}/||x_{k+1}||_2$, $k \leftarrow k+1$, repeat.

► $x_k \rightarrow \mathsf{PageRank}$ vector $v_1 : Av_1 = \lambda_1 v_1$

Inverse power method

Inverse (shift-and-invert) power method: $x := (A - \mu I)^{-1}x$, x = x/||x||

• Converges with improved linear rate $\frac{|\lambda_{\sigma(2)}-\mu|}{|\lambda_{\sigma(1)}-\mu|}$ to eigval closest to μ (σ : permutation)

Inverse power method

Inverse (shift-and-invert) power method: $x := (A - \mu I)^{-1}x$, x = x/||x||

- Converges with improved linear rate $\frac{|\lambda_{\sigma(2)} \mu|}{|\lambda_{\sigma(1)} \mu|}$ to eigval closest to μ (σ : permutation)
- μ can change adaptively with the iterations. The choice $\mu := x^T A x$ gives Rayleigh quotient iteration, with **quadratic** convergence $\|Ax^{(k+1)} - \lambda^{(k+1)}x^{(k+1)}\| = O(\|Ax^{(k)} - \lambda^{(k)}x^{(k)}\|^2)$ (cubic if A symmetric)