Floating-point arithmetic \—\RQ‘AW‘ 207 (A5 N.A)

T2l el
» Computers store number in base 2 with finite/fixed memory (bits) (besre %)
» Irrational numbers are stored inexactly, e.g. 1/3 % {3= 1. o(rooC

» Calculations are rounded to nearest floating-point number (rounding error) * 21—_/{[

. . . . — (p00 -1 d
» Thus the accuracy of the final error is nontrivial (oot
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Two examples with MATLAB 3
)3 ((sqrs(2))? — 2) * 0.4441 (should be 1) | lek 4
> i1 x ~ 30 (should be cc..) -
— T £ /6% N 20 £\(0%) = 30

An important (but not main) par?:)fo;\umerical analysis/NLA is to study the effect of
rounding errors
Canonical reference: Higham's book (2002)




Conditioning and stability A ;QET
K<

@ﬂ)’nin\gis the sensitivity of a problem (e.g. of findingiven x) to
perturbation in inputs, i.e., how Iarge‘?g:: sups, || f(x + éx) — f(x)||/||5a:ﬂs in
— —

the limit dx — O. = Veg
this is absolute conditiopYnumber; equally important is relative condition number (C»I
§z)— 5 ~ ‘1 = L (oS ]
e = sups Y/ ) = eoritiond 2 EGS 1) by
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> [(Backward) Stability is a property of an algorithm, which describes if the f”

computed solution gy is a 'good’ solution, in that it is an exact solution of a nearby
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Conditioning and stability

» Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to
perturbation in inputs, i.e., how large k := sups, ||f(z + 0x) — f(x)||/||dz]| is in
the limit dx — 0.

(this is absolute condition number; equally important is relative condition number

z+ox)—f(x ox
o = supg, LB S0l 1o

» | (Backward) Stability is a property of an algorithm, which describes if the
computed solution ¢ is a 'good’ solution, in that it is an exact solution of a nearby
input, that is, § = f(z + Ax) for a small Az,

If problem is ill-conditioned s > 1, then blame the problem not the algorithm

Notation/convention: & denotes a computed approximation to x (e.g. of z = A~1b)
€ denotes a small term O(u), on the order of-unit roundoff/working precision; so we
write e.g. u, 10u, (m + n)unnuw)all as €

» Consequently (in this lecture/discussion) norm choice does not matter



Numerical stability: backward stability
For computational task Y = f(X) and computed approximant Y,

> Ideally, error |[Y — Y||/||Y]| = e: seldom true
(u: unit roundoff, ~ 107'® in standard double precision)
> Good alg. has Backward stability ¥ = f(X +AX), H)ﬁ)_(ﬂ(”

of slightly wrong input "

= ¢ “exact solution



Numerical stability: backward stability

For computational task Y = f(X) and computed approximant Y "
> deally, error [[¥ — ¥}/[[¥]| = e seldom trae- “uruert (b 7

(u: unit roundoff, &~ 107'° in standard double precision)

> Good alg. has Backward stability ¥ = f(X +AX), X < ﬁ(” = ¢ "exact solution

of slightly wrong input ” =) 9

» Justification: Input (matrix) is usually inexact anyway!\f(X + AX) |is just as
ood at| f(X))at approximating f(X,) where |[AX]| = O([|[X — X.])
We shall 'settle with’ such solution, though it may not mean Y —Y is small

[ S
» Forward stability \Y — Y ||/||Y || = O(s(f)u) “error is as small as backward stable
EE ity Yy — VI/1Y | = O(s(F1a j

alg.” (sometimes used to mean small error; we follow Higham’'s book [2002])
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Matrix condition number

Umax(A)
>1
Umin(A (_ )
T~
e.g. for linear systems. A backward stable soln for Az =b, s.t. (A+AA)z =0
satisfies, assuming backward stability |AA| < || A|| and ko (A) < et (so
= = —<

AT A4l < 1),
-

K9 (A) =




Matrix condition number

)= e

e.g. for linear systems. A backward stable soln for Az = b, s.t. (A+ AA)A =b
satisfies, assuming backward stability ||AA|| < €||A|| and k2(A) < e ! (so

HA_lAAH < 1), (« m
HI—CISH < u/({}'lclleu\\)ﬂ\\@\ a M\O)
| _) -
N ( Joe b @A)
'proo y Neumann series C‘l \(\ ._\fK‘(’X € ﬁi ST pom
e@- "‘ 0 Gk—l .
P=(I—ATTAA+O(JATTAAIP)AT
T— ———

Sod]=(A+AA)"b=A"1b - ATTAAATIb + O(| AT AA?) =<,l
()(||A_1AAH£),{Hence X

' 1 1
lz =2l S [A7 Adz| <{[|A[AA[fz]l = w2(A)]]

\_)p = -




Backward stable-+~well conditioned=accurate solution
Suppose

>T' f(X) computed backward stably i.e., Y = f(X + AX), |AX] =

>Véond|t|on|ng | f(X Z,_f(,X_JLéX)H < "GHAXH R /
Then (relative version possﬁf?ﬂl&/ G (@q >
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— <
|V - Y| S me s



Backward stable-+~well conditioned=accurate solution
Suppose

> Y = f(X) computed backward stably i.e., Y = f(X + AX), |[AX|| =
» Conditioning || f(X) — f(X + AX)| < k|[|AX||
(\

Then (relative version possible)

|Y — Y| < ke

—

proof Hf/_yH:||f(X—|—AX)—f(X)||5&\@M|:lie
&



Backward stable-+~well conditioned=accurate solution
Suppose

> Y = f(X) computed backward stably i.e., Y = f(X + AX), |[AX|| =
» Conditioning || f(X) — f(X + AX)| < k[|AX||

Then (relative version possible)

IV YIS ne

'proof’”: ~
P Y = Y[ =[f(X +AX) - f(X)] < FvHAXIIMI = Ke

| &
If well-conditioned good accuracy! Important examples

» Well-conditioned linear system Az = b, ko(A) ~ 1 2 iud. &K

> Eigenvalues of symmetric matrices (via Weyl's bound Offé. b.< a
M(A+E) € Mi(A) + [ZE])5, |1E]2] ) eiguec( 1) 4z J
> Singular values of any matrix o;(A + E)/e[oi(A) TN Ela, I1Elo] lz\ (AY-\(A) ey

Note: eigvecs/singvecs can be highly ill-conditioned_ [L{ A~ &(/UFQ(W



Backward stability of triangular systems
Recall Ax = b via\Ly = b, Uz = y (triangular systems).
= - < . .
The computed solution Z for a (upper/lower) triangular linear systen@ = b solved
via back/forward substitution is backward stable, i.e., it satisfies

(R+AR =) QAR”_ [ RI: >

Proof: Trefethen-Bau or Higham (nonexammable but interesting)

><backward error can be bounded componentwme)
» this means ||z — z||/||z] < er2(R)
» (unavoidably) poor wo;Qt—case (and attainable) bound when ill-conditioned

» often better with triangular systems

@cfs‘mszc:c bet c,—qua(»lt



(In)stability of Ax = b via LU with pivots

(Fact proof nonexaminable): Computed LU satisfieg &) 9 W
(note: not —”LU Al =€) L\f ,A{‘KAA
> If ||L||||U|| O(AN), the (L + AL) U+4(U o)= PRy,
— & backward-stable solutior (exercise) 1‘@@ (bl & (
/ rm, ov lapU= cdl a0
ey bw# poscille ’
=2 b.s. LG (L0
(4 6<1A>X =\p A5
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(In)stability of Az = b via LU with pivots
Fact (proof nonexaminable): Computed LU satisfies H||I73[ﬁ||_(}4HH

LU-A||
note: not | — ¢
( TAT )

> If |L||[|U]| = O(|A|]), then (L + AL)Y(U + AU)Z :13) uﬁM}\(;OU(AL\)

= & backward stable solution (exercise)

=€

A

Question: Does LU = A+ AA or LU = PA+ AA with ||AA| = €||A]| hold?
== . ==

Without pivot (P = I): | L|||U|| > ||A|| unboundedly (e.g. [¢1]) unstable

— _——




A A

(In)stability of Ax = b via LU with pivots
[LU—A]

Fact (proof nonexaminable): Computed LU satisfies Mol = €

ILU-A]
(note: not T =€)

> If ||L||[|U]|| = O(||A|]), then (L + AL)(U + AU)Z = b
= & backward stable solution (exercise)

Question: Does LU = A+ AA or LU = PA+ AA with ||AA|| = €||A]| hold?

Without pivot (P = I): ||L||||U]| > ||A]| unboundedly (e.g. [$1]) unstable

J(
With pivots: “‘(L/[F\h(\”( / 2‘/\

» Worst-case: HL||HU|| > ||A|| grows exponent|all with n, unstable
(ol = (o)Al

» growth governed by that of
> Wice (average case): perftable

» Hence this is how Ax = b is solved, despite alternatives with guaranteed stability
k exist (but slower; e.g. via SVD, or QR (next))
R

esolution /explanation: among biggest open problems in numerical linear algebra!



Stability of Cholesky for A > 0
Cholesky A = -for As0 \ A

» succeeds Wlthout pivot (active matrix is always
> R never contains entries >JLA||

= backward stable! Hence positive def|n|te linear system@ = b stable via Cholesky
/\ e

R A' + £ A((). chvecff',
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(In)stability of Gram-Schmidt A QIR

» Gram-Schmidt is subtle

» plain (classical) version: - a5

—_— o /D
N
» modified Gram-Schmidt (orthogonalise 'one vector at a time'): ||QT22 —I|| £ era(A)

4\
» Gram-Schmidt twice (G-S again on computed Q): [|QTQ — I| < e
r_—\




Stability of Householder QR
With Householder QR, the computed Q R satisfy

1¢7¢ - 1= 0. ] Q QR| = owmm
.\

and (of course) R upper triangular.

¢S L/f/(
Rough proof b(ﬁa g

» Each reflector satisfies f1 = H; A+ €| A||

> Hence (R =) fl(H, -~ 1 A) = Hy - Hy A+ A]

iy ) = O = el s AT £

> Thus QR = A + ¢||A| = jim
—_———— ©

T~}



Stability of Householder QR
With Householder QR, the computed Q,f{ satisfy

(@7¢~1=009, ]\~ QRI = ()]

and (of course) R upper triangular.

Rough proof
» Each reflector satisfies fI(H;A) = H; A + || A

A

» Hence (R =)fl(Hy,---H1A) = H,--- HiA+¢€||A|
> fl(H,---H) = QT =H,---H +¢||A],

> Thus QR = A+ €| A A=QR
Notes:
» This doesn't mean— Qll, H@ — R||iare small at alll Indeed Q, R are as
ill-conditioned as A 2w

» Ax = b via QR, least-squares stable
Y(please see arXiv:2009.11392 for application in low-rank approximation)



Orthogonality matters for stability

With orthogonal matri ;
I7(QA) - QA _ )  I/IAQ) — AQ| _
|QA] [ [AQ B




Orthogonality matters for stability
With orthogonal matrices @),
I7(QA) - QA _  |IfIAQ) — AQ| _
— QA — |AQ]| B

whereas in general\|| fI(AB) — AB|| < €| Al|[| B ))so
WZ(AB) —éﬁBH/HA < emin(ka(A), ke (B)) (why? exercise)
§

\




Orthogonality matters for stability
With orthogonal matrices @),
LA -4 IfUAQ) — Q)| _
Qal = °© faQl =\
whereas in general, || fI(AB) — AB|| < ¢||Al|||B||, so
|fI(AB) — AB||/||AB|| < emin(k2(A), k2(B)) (why? exercise)
Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue
decomposition of non-normal matrices, Jordan form, etc),
whereas those based on orthogonal matrices are stable, e.g.

S Householder QR factorisation
» QR algorithm for Az = \x

» Golub-Kahan algorithm for A = UX V7T

> CQZ algorithm for Ax = ABaj)

We next turn to the algorithms in boldface




