
Floating-point arithmetic
I Computers store number in base 2 with finite/fixed memory (bits)

I Irrational numbers are stored inexactly, e.g. 1/3 ¥ 0.333...
I Calculations are rounded to nearest floating-point number (rounding error)

I Thus the accuracy of the final error is nontrivial

Two examples with MATLAB

I ((sqrt(2))2 ≠ 2) ú 1e15 = 0.4441 (should be 1..)

I qŒ
n=1

1
n ¥ 30 (should be Œ..)

An important (but not main) part of numerical analysis/NLA is to study the e�ect of

rounding errors

Canonical reference: Higham’s book (2002)

Conditioning and stability
I Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to

perturbation in inputs, i.e., how large Ÿ := sup”x Îf(x + ”x) ≠ f(x)Î/Î”xÎ is in

the limit ”x æ 0.

(this is absolute condition number; equally important is relative condition number

Ÿr := sup”x
Îf(x+”x)≠f(x)Î

Îf(x)Î
/Î”xÎ

ÎxÎ)

I (Backward) Stability is a property of an algorithm, which describes if the

computed solution ŷ is a ’good’ solution, in that it is an exact solution of a nearby

input, that is, ŷ = f(x + �x) for a small �x.

If problem is ill-conditioned Ÿ ∫ 1, then blame the problem not the algorithm

Notation/convention: x̂ denotes a computed approximation to x (e.g. of x = A≠1b)

‘ denotes a small term O(u), on the order of unit roundo�/working precision; so we

write e.g. u, 10u, (m + n)u, mnu all as ‘

I Consequently (in this lecture/discussion) norm choice does not matter

Conditioning and stability
I Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to

perturbation in inputs, i.e., how large Ÿ := sup”x Îf(x + ”x) ≠ f(x)Î/Î”xÎ is in

the limit ”x æ 0.

(this is absolute condition number; equally important is relative condition number

Ÿr := sup”x
Îf(x+”x)≠f(x)Î

Îf(x)Î
/Î”xÎ

ÎxÎ)

I (Backward) Stability is a property of an algorithm, which describes if the

computed solution ŷ is a ’good’ solution, in that it is an exact solution of a nearby

input, that is, ŷ = f(x + �x) for a small �x.

If problem is ill-conditioned Ÿ ∫ 1, then blame the problem not the algorithm

Notation/convention: x̂ denotes a computed approximation to x (e.g. of x = A≠1b)

‘ denotes a small term O(u), on the order of unit roundo�/working precision; so we

write e.g. u, 10u, (m + n)u, mnu all as ‘

I Consequently (in this lecture/discussion) norm choice does not matter

Numerical stability: backward stability
For computational task Y = f(X) and computed approximant Ŷ ,

I Ideally, error ÎY ≠ Ŷ Î/ÎY Î = ‘: seldom true

(u: unit roundo�, ¥ 10≠16 in standard double precision)
I Good alg. has Backward stability Ŷ = f(X + �X), ÎX≠X̂Î

ÎXÎ = ‘ “exact solution

of slightly wrong input ”

I Justification: Input (matrix) is usually inexact anyway! f(X + �X) is just as

good at f(X) at approximating f(Xú) where Î�XÎ = O(ÎX ≠ XúÎ)
We shall ’settle with’ such solution, though it may not mean Ŷ ≠ Y is small

I Forward stability ÎY ≠ Ŷ Î/ÎY Î = O(Ÿ(f)u) “error is as small as backward stable

alg.” (sometimes used to mean small error; we follow Higham’s book [2002])

Numerical stability: backward stability
For computational task Y = f(X) and computed approximant Ŷ ,

I Ideally, error ÎY ≠ Ŷ Î/ÎY Î = ‘: seldom true

(u: unit roundo�, ¥ 10≠16 in standard double precision)
I Good alg. has Backward stability Ŷ = f(X + �X), ÎX≠X̂Î

ÎXÎ = ‘ “exact solution

of slightly wrong input ”

I Justification: Input (matrix) is usually inexact anyway! f(X + �X) is just as

good at f(X) at approximating f(Xú) where Î�XÎ = O(ÎX ≠ XúÎ)
We shall ’settle with’ such solution, though it may not mean Ŷ ≠ Y is small

I Forward stability ÎY ≠ Ŷ Î/ÎY Î = O(Ÿ(f)u) “error is as small as backward stable

alg.” (sometimes used to mean small error; we follow Higham’s book [2002])

Matrix condition number
Ÿ2(A) = ‡max(A)

‡min(A) (Ø 1)

e.g. for linear systems. A backward stable soln for Ax = b, s.t. (A + �A)x̂ = b

satisfies, assuming backward stability Î�AÎ Æ ‘ÎAÎ and Ÿ2(A) π ‘≠1
(so

ÎA≠1�AÎ π 1),

Îx̂ ≠ xÎ
ÎxÎ . ‘Ÿ2(A)

’proof’: By Neumann series

(A + �A)≠1 = (A(I + A≠1�A))≠1 = (I ≠ A≠1�A + O(ÎA≠1�AÎ2))A≠1

So x̂ = (A + �A)≠1b = A≠1b ≠ A≠1�AA≠1b + O(ÎA≠1�AÎ2) =
x ≠ A≠1�Ax + O(ÎA≠1�AÎ2), Hence

Îx ≠ x̂Î . ÎA≠1�AxÎ Æ ÎA≠1ÎÎ�AÎÎxÎ = Ÿ2(A)ÎxÎ

Matrix condition number
Ÿ2(A) = ‡max(A)

‡min(A) (Ø 1)

e.g. for linear systems. A backward stable soln for Ax = b, s.t. (A + �A)x̂ = b

satisfies, assuming backward stability Î�AÎ Æ ‘ÎAÎ and Ÿ2(A) π ‘≠1
(so

ÎA≠1�AÎ π 1),

Îx̂ ≠ xÎ
ÎxÎ . ‘Ÿ2(A)

’proof’: By Neumann series

(A + �A)≠1 = (A(I + A≠1�A))≠1 = (I ≠ A≠1�A + O(ÎA≠1�AÎ2))A≠1

So x̂ = (A + �A)≠1b = A≠1b ≠ A≠1�AA≠1b + O(ÎA≠1�AÎ2) =
x ≠ A≠1�Ax + O(ÎA≠1�AÎ2), Hence

Îx ≠ x̂Î . ÎA≠1�AxÎ Æ ÎA≠1ÎÎ�AÎÎxÎ = Ÿ2(A)ÎxÎ

Backward stable+well conditioned=accurate solution
Suppose

I Y = f(X) computed backward stably i.e., Ŷ = f(X + �X), Î�XÎ = ‘.
I Conditioning Îf(X) ≠ f(X + �X)Î . ŸÎ�XÎ

Then (relative version possible)

ÎŶ ≠ Y Î . Ÿ‘

’proof’: ÎŶ ≠ Y Î = Îf(X + �X) ≠ f(X)Î . ŸÎ�XÎÎf(X)Î = Ÿ‘

If well-conditioned Ÿ = O(1), good accuracy! Important examples:

I Well-conditioned linear system Ax = b, Ÿ2(A) ¥ 1
I Eigenvalues of symmetric matrices (via Weyl’s bound

⁄i(A + E) œ ⁄i(A) + [≠ÎEÎ2, ÎEÎ2])

I Singular values of any matrix ‡i(A + E) œ ‡i(A) + [≠ÎEÎ2, ÎEÎ2]
Note: eigvecs/singvecs can be highly ill-conditioned

Backward stable+well conditioned=accurate solution
Suppose

I Y = f(X) computed backward stably i.e., Ŷ = f(X + �X), Î�XÎ = ‘.
I Conditioning Îf(X) ≠ f(X + �X)Î . ŸÎ�XÎ

Then (relative version possible)

ÎŶ ≠ Y Î . Ÿ‘

’proof’: ÎŶ ≠ Y Î = Îf(X + �X) ≠ f(X)Î . ŸÎ�XÎÎf(X)Î = Ÿ‘

If well-conditioned Ÿ = O(1), good accuracy! Important examples:

I Well-conditioned linear system Ax = b, Ÿ2(A) ¥ 1
I Eigenvalues of symmetric matrices (via Weyl’s bound

⁄i(A + E) œ ⁄i(A) + [≠ÎEÎ2, ÎEÎ2])

I Singular values of any matrix ‡i(A + E) œ ‡i(A) + [≠ÎEÎ2, ÎEÎ2]
Note: eigvecs/singvecs can be highly ill-conditioned

Backward stable+well conditioned=accurate solution
Suppose

I Y = f(X) computed backward stably i.e., Ŷ = f(X + �X), Î�XÎ = ‘.
I Conditioning Îf(X) ≠ f(X + �X)Î . ŸÎ�XÎ

Then (relative version possible)

ÎŶ ≠ Y Î . Ÿ‘

’proof’: ÎŶ ≠ Y Î = Îf(X + �X) ≠ f(X)Î . ŸÎ�XÎÎf(X)Î = Ÿ‘

If well-conditioned Ÿ = O(1), good accuracy! Important examples:

I Well-conditioned linear system Ax = b, Ÿ2(A) ¥ 1
I Eigenvalues of symmetric matrices (via Weyl’s bound

⁄i(A + E) œ ⁄i(A) + [≠ÎEÎ2, ÎEÎ2])

I Singular values of any matrix ‡i(A + E) œ ‡i(A) + [≠ÎEÎ2, ÎEÎ2]
Note: eigvecs/singvecs can be highly ill-conditioned

Backward stability of triangular systems
Recall Ax = b via Ly = b, Ux = y (triangular systems).

The computed solution x̂ for a (upper/lower) triangular linear system Rx = b solved

via back/forward substitution is backward stable, i.e., it satisfies

(R + �R)x̂ = b, Î�RÎ = O(‘ÎRÎ).

Proof: Trefethen-Bau or Higham (nonexaminable but interesting)

I backward error can be bounded componentwise

I this means Îx̂ ≠ xÎ/ÎxÎ Æ ‘Ÿ2(R)
I (unavoidably) poor worst-case (and attainable) bound when ill-conditioned

I often better with triangular systems

(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies

ÎL̂Û≠AÎ
ÎLÎÎUÎ = ‘

(note: not
ÎL̂Û≠AÎ

ÎAÎ = ‘)

I If ÎLÎÎUÎ = O(ÎAÎ), then (L + �L)(U + �U)x̂ = b

∆ x̂ backward stable solution (exercise)

Question: Does LU = A + �A or LU = PA + �A with Î�AÎ = ‘ÎAÎ hold?

Without pivot (P = I): ÎLÎÎUÎ ∫ ÎAÎ unboundedly (e.g.
#

‘ 1
1 1

$
) unstable

With pivots:

I Worst-case: ÎLÎÎUÎ ∫ ÎAÎ grows exponentially with n, unstable

I growth governed by that of ÎLÎÎUÎ/ÎAÎ ∆ ÎUÎ/ÎAÎ
I In practice (average case): perfectly stable

I Hence this is how Ax = b is solved, despite alternatives with guaranteed stability

exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!

(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies

ÎL̂Û≠AÎ
ÎLÎÎUÎ = ‘

(note: not
ÎL̂Û≠AÎ

ÎAÎ = ‘)

I If ÎLÎÎUÎ = O(ÎAÎ), then (L + �L)(U + �U)x̂ = b

∆ x̂ backward stable solution (exercise)

Question: Does LU = A + �A or LU = PA + �A with Î�AÎ = ‘ÎAÎ hold?

Without pivot (P = I): ÎLÎÎUÎ ∫ ÎAÎ unboundedly (e.g.
#

‘ 1
1 1

$
) unstable

With pivots:

I Worst-case: ÎLÎÎUÎ ∫ ÎAÎ grows exponentially with n, unstable

I growth governed by that of ÎLÎÎUÎ/ÎAÎ ∆ ÎUÎ/ÎAÎ
I In practice (average case): perfectly stable

I Hence this is how Ax = b is solved, despite alternatives with guaranteed stability

exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!

(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies

ÎL̂Û≠AÎ
ÎLÎÎUÎ = ‘

(note: not
ÎL̂Û≠AÎ

ÎAÎ = ‘)

I If ÎLÎÎUÎ = O(ÎAÎ), then (L + �L)(U + �U)x̂ = b

∆ x̂ backward stable solution (exercise)

Question: Does LU = A + �A or LU = PA + �A with Î�AÎ = ‘ÎAÎ hold?

Without pivot (P = I): ÎLÎÎUÎ ∫ ÎAÎ unboundedly (e.g.
#

‘ 1
1 1

$
) unstable

With pivots:

I Worst-case: ÎLÎÎUÎ ∫ ÎAÎ grows exponentially with n, unstable

I growth governed by that of ÎLÎÎUÎ/ÎAÎ ∆ ÎUÎ/ÎAÎ
I In practice (average case): perfectly stable

I Hence this is how Ax = b is solved, despite alternatives with guaranteed stability

exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!

Stability of Cholesky for A º 0
Cholesky A = RT R for A º 0
I succeeds without pivot (active matrix is always positive definite)

I R never contains entries > ÎAÎ
∆ backward stable! Hence positive definite linear system Ax = b stable via Cholesky

(In)stability of Gram-Schmidt
I Gram-Schmidt is subtle

I plain (classical) version: ÎQT Q ≠ IÎ Æ ‘Ÿ2(A))2

I modified Gram-Schmidt (orthogonalise ’one vector at a time’): ÎQT Q ≠ IÎ Æ ‘Ÿ2(A)

I Gram-Schmidt twice (G-S again on computed Q): ÎQT Q ≠ IÎ Æ ‘

Stability of Householder QR
With Householder QR, the computed Q̂, R̂ satisfy

Q̂T Q̂ ≠ I = O(‘), ÎA ≠ Q̂R̂Î = O(‘ÎAÎ),

and (of course) R upper triangular.

Rough proof

I Each reflector satisfies fl(HiA) = HiA + ‘iÎAÎ
I Hence (R̂ =)fl(Hn · · · H1A) = Hn · · · H1A + ‘ÎAÎ
I fl(Hn · · · H1) =: Q̂T = Hn · · · H1 + ‘ÎAÎ,

I Thus Q̂R̂ = A + ‘ÎAÎ

Notes:

I This doesn’t mean ÎQ̂ ≠ QÎ, ÎR̂ ≠ RÎ are small at all! Indeed Q̂, R are as

ill-conditioned as A
I Ax = b via QR, least-squares stable

(please see arXiv:2009.11392 for application in low-rank approximation)

Stability of Householder QR
With Householder QR, the computed Q̂, R̂ satisfy

Q̂T Q̂ ≠ I = O(‘), ÎA ≠ Q̂R̂Î = O(‘ÎAÎ),

and (of course) R upper triangular.

Rough proof

I Each reflector satisfies fl(HiA) = HiA + ‘iÎAÎ
I Hence (R̂ =)fl(Hn · · · H1A) = Hn · · · H1A + ‘ÎAÎ
I fl(Hn · · · H1) =: Q̂T = Hn · · · H1 + ‘ÎAÎ,

I Thus Q̂R̂ = A + ‘ÎAÎ
Notes:

I This doesn’t mean ÎQ̂ ≠ QÎ, ÎR̂ ≠ RÎ are small at all! Indeed Q̂, R are as

ill-conditioned as A
I Ax = b via QR, least-squares stable

(please see arXiv:2009.11392 for application in low-rank approximation)

Orthogonality matters for stability
With orthogonal matrices Q,

Îfl(QA) ≠ QAÎ
ÎQAÎ Æ ‘,

Îfl(AQ) ≠ AQÎ
ÎAQÎ Æ ‘

whereas in general, Îfl(AB) ≠ ABÎ Æ ‘ÎAÎÎBÎ, so

Îfl(AB) ≠ ABÎ/ÎABÎ Æ ‘ min(Ÿ2(A), Ÿ2(B)) (why? exercise)

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue

decomposition of non-normal matrices, Jordan form, etc),

whereas those based on orthogonal matrices are stable, e.g.

I Householder QR factorisation

I QR algorithm for Ax = ⁄x
I Golub-Kahan algorithm for A = U�V T

I QZ algorithm for Ax = ⁄Bx

We next turn to the algorithms in boldface

Orthogonality matters for stability
With orthogonal matrices Q,

Îfl(QA) ≠ QAÎ
ÎQAÎ Æ ‘,

Îfl(AQ) ≠ AQÎ
ÎAQÎ Æ ‘

whereas in general, Îfl(AB) ≠ ABÎ Æ ‘ÎAÎÎBÎ, so

Îfl(AB) ≠ ABÎ/ÎABÎ Æ ‘ min(Ÿ2(A), Ÿ2(B)) (why? exercise)

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue

decomposition of non-normal matrices, Jordan form, etc),

whereas those based on orthogonal matrices are stable, e.g.

I Householder QR factorisation

I QR algorithm for Ax = ⁄x
I Golub-Kahan algorithm for A = U�V T

I QZ algorithm for Ax = ⁄Bx

We next turn to the algorithms in boldface

Orthogonality matters for stability
With orthogonal matrices Q,

Îfl(QA) ≠ QAÎ
ÎQAÎ Æ ‘,

Îfl(AQ) ≠ AQÎ
ÎAQÎ Æ ‘

whereas in general, Îfl(AB) ≠ ABÎ Æ ‘ÎAÎÎBÎ, so

Îfl(AB) ≠ ABÎ/ÎABÎ Æ ‘ min(Ÿ2(A), Ÿ2(B)) (why? exercise)

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue

decomposition of non-normal matrices, Jordan form, etc),

whereas those based on orthogonal matrices are stable, e.g.

I Householder QR factorisation

I QR algorithm for Ax = ⁄x
I Golub-Kahan algorithm for A = U�V T

I QZ algorithm for Ax = ⁄Bx

We next turn to the algorithms in boldface

